DOI QR코드

DOI QR Code

Engineering of Sulfolobus acidocaldarius for Hemicellulosic Biomass Utilization

  • Lee, Areum (Department of Integrated Biological Science, College of Natural Sciences, Pusan National University) ;
  • Jin, Hyeju (Department of Integrated Biological Science, College of Natural Sciences, Pusan National University) ;
  • Cha, Jaeho (Department of Microbiology, College of Natural Sciences, Pusan National University)
  • Received : 2022.02.11
  • Accepted : 2022.02.22
  • Published : 2022.05.28

Abstract

The saccharification of cellulose and hemicellulose is essential for utilizing lignocellulosic biomass as a biofuel. While cellulose is composed of glucose only, hemicelluloses are composed of diverse sugars such as xylose, arabinose, glucose, and galactose. Sulfolobus acidocaldarius is a good potential candidate for biofuel production using hemicellulose as this archaeon simultaneously utilizes various sugars. However, S. acidocaldarius has to be manipulated because the enzyme that breaks down hemicellulose is not present in this species. Here, we engineered S. acidocaldarius to utilize xylan as a carbon source by introducing xylanase and β-xylosidase. Heterologous expression of β-xylosidase enhanced the organism's degradability and utilization of xylooligosaccharides (XOS), but the mutant still failed to grow when xylan was provided as a carbon source. S. acidocaldarius exhibited the ability to degrade xylan into XOS when xylanase was introduced, but no further degradation proceeded after this sole reaction. Following cell growth and enzyme reaction, S. acidocaldarius successfully utilized xylan in the synergy between xylanase and β-xylosidase.

Keywords

Acknowledgement

This research was supported by PNU-RENovation (2020-2021) and the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning (NRF-2019R1I1A2A01062787).

References

  1. Serrano-Ruiz JC, Luque R, Sepulveda-Escribano A. 2011. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem. Soc. Rev. 40: 5266-5281. https://doi.org/10.1039/c1cs15131b
  2. Martins F, Felgueiras C, Smitkova M, Caetano N. 2019. Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 12: 964. https://doi.org/10.3390/en12060964
  3. Change C. 2007. IPCC fourth assessment report. Phys. Sci. Basis 2: 580-595.
  4. Nel WP, Cooper CJ. 2009. Implications of fossil fuel constraints on economic growth and global warming. Energy Policy 37: 166-180. https://doi.org/10.1016/j.enpol.2008.08.013
  5. Gencsu I, Whitley S, Trilling M, van der Burg L, McLynn M, Worrall L. 2020. Phasing out public financial flows to fossil fuel production in Europe. Clim. Policy 20: 1010-1023. https://doi.org/10.1080/14693062.2020.1736978
  6. Ayling J, Gunningham N. 2017. Non-state governance and climate policy: the fossil fuel divestment movement. Clim. Policy 17: 131-149. https://doi.org/10.1080/14693062.2015.1094729
  7. Bergman N. 2018. Impacts of the fossil fuel divestment movement: effects on finance, policy and public discourse. Sustainability 10: 2529. https://doi.org/10.3390/su10072529
  8. Zoghlami A, Paes G. 2019. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front. Chem. 7: 874. https://doi.org/10.3389/fchem.2019.00874
  9. Singhvi MS, Gokhale DV. 2019. Lignocellulosic biomass: hurdles and challenges in its valorization. Appl. Microbiol. Biotechnol. 103: 9305-9320. https://doi.org/10.1007/s00253-019-10212-7
  10. Houfani AA, Anders N, Spiess AC, Baldrian P, Benallaoua S. 2020. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars-a review. Biomass. Bioenerg. 134: 105481. https://doi.org/10.1016/j.biombioe.2020.105481
  11. Kumar R, Singh S, Singh OV. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35: 377-391. https://doi.org/10.1007/s10295-008-0327-8
  12. Limayem A, Ricke SC. 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38: 449-467. https://doi.org/10.1016/j.pecs.2012.03.002
  13. Scheller HV, Ulvskov P. 2010. Hemicelluloses. Annu. Rev. Plant Biol. 61: 263-289. https://doi.org/10.1146/annurev-arplant-042809-112315
  14. Schocke L, Brasen C, Siebers B. 2019. Thermoacidophilic Sulfolobus species as source for extremozymes and as novel archaeal platform organisms. Curr. Opin. Biotechnol. 59: 71-77. https://doi.org/10.1016/j.copbio.2019.02.012
  15. Quehenberger J, Shen L, Albers SV, Siebers B, Spadiut O. 2017. Sulfolobus - A potential key organism in future biotechnology. Front. Microbiol. 8: 2474. https://doi.org/10.3389/fmicb.2017.02474
  16. Joshua CJ, Dahl R, Benke PI, Keasling JD. 2011. Absence of diauxie during simultaneous utilization of glucose and xylose by Sulfolobus acidocaldarius. J. Bacteriol. 193: 1293-1301. https://doi.org/10.1128/JB.01219-10
  17. Brock TD, Brock KM, Belly RT, Weiss RL. 1972. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Microbiol. 84: 54-68.
  18. Wagner M, van Wolferen M, Wagner A, Lassak K, Meyer BH, Reimann J, Albers SV. 2012. Versatile genetic tool box for the crenarchaeote Sulfolobus acidocaldarius. Front. Microbiol. 3: 214. https://doi.org/10.3389/fmicb.2012.00214
  19. Chen L, Brugger K, Skovgaard M, Redder P, She Q, Torarinsson E, et al. 2005. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J. Bacteriol. 187: 4992-4999. https://doi.org/10.1128/JB.187.14.4992-4999.2005
  20. Wagner M, Shen L, Albersmeier A, van der Kolk N, Kim S, Cha J, et al. 2018. Sulfolobus acidocaldarius transports pentoses via a carbohydrate uptake transporter 2 (CUT2)-type ABC transporter and metabolizes them through the aldolase-independent Weimberg pathway. Appl. Environ. Microbiol. 84: e01273-17.
  21. Nunn CE, Johnsen U, Schonheit P, Fuhrer T, Sauer U, Hough DW, et al. 2010. Metabolism of pentose sugars in the hyperthermophilic archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius. J. Biol. Chem. 285: 33701-33709. https://doi.org/10.1074/jbc.M110.146332
  22. Cannio R, Di Prizito N, Rossi M, Morana A. 2004. A xylan-degrading strain of Sulfolobus solfataricus: isolation and characterization of the xylanase activity. Extremophiles 8: 117-124. https://doi.org/10.1007/s00792-003-0370-3
  23. Morana A, Paris O, Maurelli L, Rossi M, Cannio R. 2007. Gene cloning and expression in Escherichia coli of a bi-functional β-D-xylosidase/α-L-arabinosidase from Sulfolobus solfataricus involved in xylan degradation. Extremophiles 11: 123-132. https://doi.org/10.1007/s00792-006-0020-7
  24. Maurelli L, Giovane A, Esposito A, Moracci M, Fiume I, Rossi M, Morana A. 2008. Evidence that the xylanase activity from Sulfolobus solfataricus Oα is encoded by the endoglucanase precursor gene (sso1354) and characterization of the associated cellulase activity. Extremophiles 12: 689-700. https://doi.org/10.1007/s00792-008-0175-5
  25. Van Der Kolk N, Wagner A, Wagner M, Wassmer B, Siebers B, Albers SV. 2020. Identification of XylR, the activator of arabinose/xylose inducible regulon in Sulfolobus acidocaldarius and its application for homologous protein expression. Front. Microbiol. 11: 1066. https://doi.org/10.3389/fmicb.2020.01066
  26. Prangishvili DA, Vashakidze RP, Chelidze MG, Gabriadze IYu IY. 1985. A restriction endonuclease SuaI from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEBS Lett. 192: 57-60. https://doi.org/10.1016/0014-5793(85)80042-9
  27. Kurosawa N, Grogan DW. 2005. Homologous recombination of exogenous DNA with the Sulfolobus acidocaldarius genome: properties and uses. FEMS Microbiol. Lett. 253: 141-149. https://doi.org/10.1016/j.femsle.2005.09.031
  28. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  29. Choi KH, Hwang S, Cha J. 2013. Identification and characterization of MalA in the maltose/maltodextrin operon of Sulfolobus acidocaldarius DSM639. J. Bacteriol. 195: 1789-1799. https://doi.org/10.1128/JB.01713-12
  30. Reiffova K, Nemcova R. 2006. Thin-layer chromatography analysis of fructooligosaccharides in biological samples. J. Chromatogr. A. 1110: 214-221. https://doi.org/10.1016/j.chroma.2006.01.039
  31. Chen C-H, Yao J-Y, Yang B, Lee H-L, Yuan S-F, Hsieh H-Y, Liang P. 2019. Engineer multi-functional cellulase/xylanase/β-glucosidase with improved efficacy to degrade rice straw. Bioresour. Technol. Rep. 5: 170-177. https://doi.org/10.1016/j.biteb.2019.01.008
  32. She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, et al. 2001. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc. Natl. Acad. Sci. USA 98: 7835-7840. https://doi.org/10.1073/pnas.141222098
  33. Eichler J, Adams MW. 2005. Post-translational protein modification in Archaea. Microbiol. Mol. Biol. Rev. 69: 393-425. https://doi.org/10.1128/MMBR.69.3.393-425.2005
  34. Meyer BH, Albers SV. 2013. Hot and sweet: protein glycosylation in Crenarchaeota. Biochem. Soc. Trans. 41: 384-392. https://doi.org/10.1042/BST20120296
  35. Girfoglio M, Rossi M, Cannio R. 2012. Cellulose degradation by Sulfolobus solfataricus requires a cell-anchored endo-β-1-4-glucanase. J. Bacteriol. 194: 5091-5100. https://doi.org/10.1128/JB.00672-12
  36. Chen L, Brugger K, Skovgaard M, Redder P, She Q, Torarinsson E, et al. 2005. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J. Bacteriol. 187: 4992-4999. https://doi.org/10.1128/JB.187.14.4992-4999.2005
  37. Berkner S, Grogan D, Albers SV, Lipps G. 2007. Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Nucleic Acids Res. 35: e88. https://doi.org/10.1093/nar/gkm449