Browse > Article
http://dx.doi.org/10.4014/jmb.2202.02016

Engineering of Sulfolobus acidocaldarius for Hemicellulosic Biomass Utilization  

Lee, Areum (Department of Integrated Biological Science, College of Natural Sciences, Pusan National University)
Jin, Hyeju (Department of Integrated Biological Science, College of Natural Sciences, Pusan National University)
Cha, Jaeho (Department of Microbiology, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.5, 2022 , pp. 663-671 More about this Journal
Abstract
The saccharification of cellulose and hemicellulose is essential for utilizing lignocellulosic biomass as a biofuel. While cellulose is composed of glucose only, hemicelluloses are composed of diverse sugars such as xylose, arabinose, glucose, and galactose. Sulfolobus acidocaldarius is a good potential candidate for biofuel production using hemicellulose as this archaeon simultaneously utilizes various sugars. However, S. acidocaldarius has to be manipulated because the enzyme that breaks down hemicellulose is not present in this species. Here, we engineered S. acidocaldarius to utilize xylan as a carbon source by introducing xylanase and β-xylosidase. Heterologous expression of β-xylosidase enhanced the organism's degradability and utilization of xylooligosaccharides (XOS), but the mutant still failed to grow when xylan was provided as a carbon source. S. acidocaldarius exhibited the ability to degrade xylan into XOS when xylanase was introduced, but no further degradation proceeded after this sole reaction. Following cell growth and enzyme reaction, S. acidocaldarius successfully utilized xylan in the synergy between xylanase and β-xylosidase.
Keywords
Hyperthermophiles; Sulfolobus acidocaldarius; hemicellulose; carbohydrateactive enzyme;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Maurelli L, Giovane A, Esposito A, Moracci M, Fiume I, Rossi M, Morana A. 2008. Evidence that the xylanase activity from Sulfolobus solfataricus Oα is encoded by the endoglucanase precursor gene (sso1354) and characterization of the associated cellulase activity. Extremophiles 12: 689-700.   DOI
2 Wagner M, van Wolferen M, Wagner A, Lassak K, Meyer BH, Reimann J, Albers SV. 2012. Versatile genetic tool box for the crenarchaeote Sulfolobus acidocaldarius. Front. Microbiol. 3: 214.   DOI
3 Nunn CE, Johnsen U, Schonheit P, Fuhrer T, Sauer U, Hough DW, et al. 2010. Metabolism of pentose sugars in the hyperthermophilic archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius. J. Biol. Chem. 285: 33701-33709.   DOI
4 Morana A, Paris O, Maurelli L, Rossi M, Cannio R. 2007. Gene cloning and expression in Escherichia coli of a bi-functional β-D-xylosidase/α-L-arabinosidase from Sulfolobus solfataricus involved in xylan degradation. Extremophiles 11: 123-132.   DOI
5 Van Der Kolk N, Wagner A, Wagner M, Wassmer B, Siebers B, Albers SV. 2020. Identification of XylR, the activator of arabinose/xylose inducible regulon in Sulfolobus acidocaldarius and its application for homologous protein expression. Front. Microbiol. 11: 1066.   DOI
6 Prangishvili DA, Vashakidze RP, Chelidze MG, Gabriadze IYu IY. 1985. A restriction endonuclease SuaI from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEBS Lett. 192: 57-60.   DOI
7 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI
8 Reiffova K, Nemcova R. 2006. Thin-layer chromatography analysis of fructooligosaccharides in biological samples. J. Chromatogr. A. 1110: 214-221.   DOI
9 Ayling J, Gunningham N. 2017. Non-state governance and climate policy: the fossil fuel divestment movement. Clim. Policy 17: 131-149.   DOI
10 Choi KH, Hwang S, Cha J. 2013. Identification and characterization of MalA in the maltose/maltodextrin operon of Sulfolobus acidocaldarius DSM639. J. Bacteriol. 195: 1789-1799.   DOI
11 Chen C-H, Yao J-Y, Yang B, Lee H-L, Yuan S-F, Hsieh H-Y, Liang P. 2019. Engineer multi-functional cellulase/xylanase/β-glucosidase with improved efficacy to degrade rice straw. Bioresour. Technol. Rep. 5: 170-177.   DOI
12 She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, et al. 2001. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc. Natl. Acad. Sci. USA 98: 7835-7840.   DOI
13 Meyer BH, Albers SV. 2013. Hot and sweet: protein glycosylation in Crenarchaeota. Biochem. Soc. Trans. 41: 384-392.   DOI
14 Girfoglio M, Rossi M, Cannio R. 2012. Cellulose degradation by Sulfolobus solfataricus requires a cell-anchored endo-β-1-4-glucanase. J. Bacteriol. 194: 5091-5100.   DOI
15 Berkner S, Grogan D, Albers SV, Lipps G. 2007. Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Nucleic Acids Res. 35: e88.   DOI
16 Eichler J, Adams MW. 2005. Post-translational protein modification in Archaea. Microbiol. Mol. Biol. Rev. 69: 393-425.   DOI
17 Kurosawa N, Grogan DW. 2005. Homologous recombination of exogenous DNA with the Sulfolobus acidocaldarius genome: properties and uses. FEMS Microbiol. Lett. 253: 141-149.   DOI
18 Chen L, Brugger K, Skovgaard M, Redder P, She Q, Torarinsson E, et al. 2005. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J. Bacteriol. 187: 4992-4999.   DOI
19 Wagner M, Shen L, Albersmeier A, van der Kolk N, Kim S, Cha J, et al. 2018. Sulfolobus acidocaldarius transports pentoses via a carbohydrate uptake transporter 2 (CUT2)-type ABC transporter and metabolizes them through the aldolase-independent Weimberg pathway. Appl. Environ. Microbiol. 84: e01273-17.
20 Cannio R, Di Prizito N, Rossi M, Morana A. 2004. A xylan-degrading strain of Sulfolobus solfataricus: isolation and characterization of the xylanase activity. Extremophiles 8: 117-124.   DOI
21 Chen L, Brugger K, Skovgaard M, Redder P, She Q, Torarinsson E, et al. 2005. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J. Bacteriol. 187: 4992-4999.   DOI
22 Nel WP, Cooper CJ. 2009. Implications of fossil fuel constraints on economic growth and global warming. Energy Policy 37: 166-180.   DOI
23 Limayem A, Ricke SC. 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38: 449-467.   DOI
24 Singhvi MS, Gokhale DV. 2019. Lignocellulosic biomass: hurdles and challenges in its valorization. Appl. Microbiol. Biotechnol. 103: 9305-9320.   DOI
25 Quehenberger J, Shen L, Albers SV, Siebers B, Spadiut O. 2017. Sulfolobus - A potential key organism in future biotechnology. Front. Microbiol. 8: 2474.   DOI
26 Scheller HV, Ulvskov P. 2010. Hemicelluloses. Annu. Rev. Plant Biol. 61: 263-289.   DOI
27 Serrano-Ruiz JC, Luque R, Sepulveda-Escribano A. 2011. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem. Soc. Rev. 40: 5266-5281.   DOI
28 Martins F, Felgueiras C, Smitkova M, Caetano N. 2019. Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 12: 964.   DOI
29 Change C. 2007. IPCC fourth assessment report. Phys. Sci. Basis 2: 580-595.
30 Gencsu I, Whitley S, Trilling M, van der Burg L, McLynn M, Worrall L. 2020. Phasing out public financial flows to fossil fuel production in Europe. Clim. Policy 20: 1010-1023.   DOI
31 Schocke L, Brasen C, Siebers B. 2019. Thermoacidophilic Sulfolobus species as source for extremozymes and as novel archaeal platform organisms. Curr. Opin. Biotechnol. 59: 71-77.   DOI
32 Bergman N. 2018. Impacts of the fossil fuel divestment movement: effects on finance, policy and public discourse. Sustainability 10: 2529.   DOI
33 Houfani AA, Anders N, Spiess AC, Baldrian P, Benallaoua S. 2020. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars-a review. Biomass. Bioenerg. 134: 105481.   DOI
34 Kumar R, Singh S, Singh OV. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35: 377-391.   DOI
35 Zoghlami A, Paes G. 2019. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front. Chem. 7: 874.   DOI
36 Joshua CJ, Dahl R, Benke PI, Keasling JD. 2011. Absence of diauxie during simultaneous utilization of glucose and xylose by Sulfolobus acidocaldarius. J. Bacteriol. 193: 1293-1301.   DOI
37 Brock TD, Brock KM, Belly RT, Weiss RL. 1972. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Microbiol. 84: 54-68.