• Title/Summary/Keyword: natural bioactive compound

Search Result 76, Processing Time 0.039 seconds

Bioactive Materials and Antioxidant Properties of Fermented Rice-bran Extract (쌀겨발효추출물의 이화학적 특성 및 항산화 작용)

  • Ahn, Hee-Young;Choe, Da-Jeong;Kim, Bo-Kyung;Lee, Jae-Hong;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1014-1020
    • /
    • 2015
  • This study suggests that fermented rice bran extract contains natural antioxidants. The contents of bioactive materials (e.g., polyphenolic compounds and flavonoids), antioxidative properties (DPPH (α,α'- diphenyl-β-picrylhydrazyl) free radical scavenging activity, Fe reducing, Cu reducing power, peroxidation of linoleic acid and rat hepatocyte microsome) were tested by in vitro experimental models using fermented rice bran (FRB) extract. The concentrations of phenolic compound and flavonoid were 19.92 mg/g and 11.56 mg/g, respectively. In oxidation in vitro models using DPPH free radical scavenging activity, (free radical scavenging activity 69.8%) Fe reducing power and Cu reducing power (effect of dose-dependent manner), Fe2+/ascorbate induced linolenic acid peroxidation by ferric thiocyanate and thiobarbituric acid (TBA) methods (inhibition activity 81%), and autooxidation of rat hepatic microsomes membrane (lipid peroxidation inhibition activity 38%), antioxidative activities were stronger in FRB extract than FRS (Fermented Rice and Soybean, positive control) extract and, these effects were dose-dependent manner. From these results, FRB extract was shown to have the most potent antioxidative properties and contain the highest amounts of antioxidative compounds such as phenolic compounds and flavonoids. Overall, these results may provide the basic data to understand the antioxidative properties of fermented rice bran for development of functional foods.

Effects of the Physiological Activities and Oxidation Inhibitory Action of Turmeric (Curcuma longa L.) by Various Solvents (울금(Curcuma longa L.)의 용매 별 추출물이 생리활성 및 산화억제에 미치는 영향)

  • Oh, Da-Young;Kim, Han-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.622-632
    • /
    • 2018
  • The aim of the present study was to evaluate of turmeric (Curcuma longa L.) on the physiological activities and oxidation inhibitory action. The effects of various solvents (distilled water DW, 70% ethanol and n-butanol) on the total phenolics content (TPC) of turmeric and their corresponding biological activity were studied. Bioactive compound of total saponin $7.506{\pm}0.349mg\;SE/g$ dry weight. Turmeric extracts yield were DW (17.11%), 70% ethanol (15.26%) and n-butanol (4.12%), respectively. Oxidation inhibitory action of the samples exhibited a dose-dependent increase. However, in the current study, none of the samples evaluated showed activity as strong as the BHA, ascorbic acid and EDTA. Results showed that extraction solvent had significant effects on TPC and oxidation inhibitory action (DPPH radical scavenging activity, ABTS radical scavenging activity, reducing power and ferric reducing antioxidant power) of n-butanol. Turmeric exhibited the antioxidant properties, which suggests that the plant material could be used for further studies as a potential source for bioactive and natural antioxidant.

Pyrophen Produced by Endophytic Fungi Aspergillus sp Isolated from Piper crocatum Ruiz & Pav Exhibits Cytotoxic Activity and Induces S Phase Arrest in T47D Breast Cancer Cells

  • Astuti, Puji;Erden, Willy;Wahyono, Wahyono;Wahyuono, Subagus;Hertiani, Triana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.615-618
    • /
    • 2016
  • Ethyl acetate extracts obtained from culture of endophytic fungi Aspergillus sp isolated from Piper crocatum Ruiz & Pav, have been shown to possess cytotoxic activity against T47D breast cancer cells. Investigations were here conducted to determine bioactive compounds responsible for the activity. Bioassay guided fractionation was employed to obtain active compounds. Structure elucidation was performed based on analysis of LC-MS, $^1H$-NMR, $^{13}C$-NMR, COSY, DEPT, HMQC, HMBC data. Cytotoxity assays were conducted in 96 well plates against T47D and Vero cell lines. Bioassay guided isolation and chemical investigation led to the isolation of pyrophen, a 4-methoxy-6-(1'-acetamido-2'-phenylethyl)-2H-pyran-2-one. Further analysis of its activity against T47D and Vero cells showed an ability to inhibit the growth of T47D cells with IC50 values of $9.2{\mu}g/mL$ but less cytotoxicity to Vero cells with an $IC_{50}$ of $109{\mu}g/mL$. This compound at a concentration of 400 ng/mL induced S-phase arrest in T47D cells.

Comparison of Flavonoid Content and Antioxidant Activities of Peel Extracts from Gardenia jasminoides Ellis by Various Solvents (치자(Gardenia jasminoides Ellis) 과피의 용매별 추출물의 Flavonoid 함량 및 항산화 활성 비교)

  • Jin, Dong-Hyeok;Oh, Da-Young;Lee, Young-Guen;Kang, Dong-Soo;Kim, Han-Soo
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.903-911
    • /
    • 2017
  • The purpose of this study was to measure the bioactivity and antioxidant activity of peel from Gardenia jasminoides fructus Ellis (GJE) in Namhae, Korea, following some established methods. CM (Chloroform:Methanol, 2:1, v/v), 70% ethanol, and n-butanol extracts were collected. Flavonoid content and value as a functional food ingredient of GJE peel was investigated through assessing antioxidant [DPPH (1,1'-diphenyl-2-picrylhydrazyl), ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid)], and hydroxyl radical scavenging activities; superoxide dismutase like ability; ferrous ion-chelating capacity; and tannin content by solvent extraction. Solvent extract antioxidant activities significantly increased (p<0.05) at increasing concentrations (0.2, 0.4, 0.6 mg/mL). GJE peel extracts were less active than the positive control [ascorbic acid, BHA (butylated hydroxyanisole), and EDTA (ethylenediaminetetraacetic acid disodium salt dihydrate)]. Based on the results of this study, GJE peel could be used as a natural antioxidant source due to its high antioxidant activity and bioactive compound content.

Phytochemicals from Goniothalamus griffithii Induce Human Cancer Cell Apoptosis

  • Banjerdpongchai, Ratana;Khaw-on, Patompong;Pompimon, Wialrt
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3281-3287
    • /
    • 2016
  • Bioactive compounds extracted from leaves and twigs of Goniothalamus griffithii include pinocembrin (PCN) and goniothalamin (GTN). The objectives of this study were to investigate the cytotoxic activities of PCN and GTN and their influence on molecular signaling for cell death in several human cancer cell lines compared to normal murine fibroblast NIH3T3 cells. GTN exhibited the most potent cytotoxicity against MCF-7 > HeLa > HepG2 > NIH3T3 cells with $IC_{50}$ values of 7.33, 14.8, 37.1 and $65.4{\mu}M$, respectively, whereas PCN was cytotoxic only to HepG2 cells with $IC_{50}$ values of ${\sim}80{\mu}M$. Apoptotic cell death was confirmed by staining the cells with annexin V-FITC and propidium iodide (PI) employing flow cytometry. Apoptosis was shown by externalization of phosphatidylserine in goniothalamin-treated MCF-7 cells in a dose response manner. Positive PI-stained cells with the typical morphology of apoptotic cells were increased dose-dependently. Furthermore, reduction of mitochondrial transmembrane potential was found in goniothalamin-treated MCF-7, HepG2 and HeLa cells. GTN treatment in MCF-7 increased caspase-3, -8 and -9 activities while GTN-induced HeLa cells showed an increase of both caspase-3 and -9 activities. But an increased caspase-8 activity was demonstrated in GTN- and PCN-treated MCF-7 and HepG2 cells, respectively. Taken together, GTN- and PCN-induced human cancer cell apoptosis was through different molecular mechanisms or signaling pathways, which might be due to different machineries in different types of cancer cells, as evidenced by the compound-modulated caspase activities in both intrinsic and/or extrinsic pathways.

Effect of Addition of Allium hookeri on the Quality of Fermented Sausage with Meat from Sulfur Fed Pigs during Ripening

  • Song, Eun-Yeong;Pyun, Chang-Won;Hong, Go-Eun;Lim, Ki-Won;Lee, Chi-Ho
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.263-272
    • /
    • 2014
  • The effect of the addition of Allium hookeri on the quality of fermented sausage made with meat from sulfur fed pigs was examined, throughout a 60 d ripening period. There were two treatments in animal management: normal feed fed pigs, and sulfur fed pigs given 0.3% sulfur mixed normal feed. Fermented sausage manufactured with meat from normal feed fed pigs, and with meat from sulfur fed pigs, and 1% A. hookeri-containing fermented sausage processed with meat from sulfur fed pigs, were determined at 1 d, 15 d, 30 d, and 60 d. The meat qualities in fermented sausage were measured by DPPH radical scavenging activity (DPPH), $ABTS^+$ radical scavenging activity ($ABTS^+$), total phenolic acids, and total flavonoid contents. Fermented sausage made from pigs that had been fed with 0.3% sulfur was protected from oxidation by reduced free radical, as shown by the significant increase in DPPH and $ABTS^+$ values, compared with fermented sausage made from normal feed fed pigs (p<0.05). A. hookeri-added fermented sausage with sulfur fed pork was shown to increase the values in DPPH, $ABTS^+$, total phenolic acid, and total flavonoid contents, by comparison with both the control sausage, and sausage with sulfur fed pork, at 60 d. These results suggest that A. hookeri in meat from sulfur fed pigs could be a source of natural addition, to increase quality in the food industry.

Antioxidant and Immunoenhancement Activities of Ginger (Zingiber officinale Roscoe) Extracts and Compounds in In Vitro and In Vivo Mouse and Human System

  • Rungkat, F-Zakaria;Nurahman;E Prangdimurt;Tejasari
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.96-104
    • /
    • 2003
  • Ginger (Zingiber officinale Roscoe) is traditionally used as appetite enhancer, improver of the digestive system, antithusive, anti-cold, antipyretic, analgesic, and antiinflammation. In vitro evaluation using human lymphocyte cultures showed almost similar indication with those in in vivo mouse study, NK cell lysing activity was improved significantly. Proliferation activity of B and T cells, and CD3$^{+}$ and CD3$^{+}$CD4$^{+}$T cell subset were better observed using oleoresin or gingerol and shogaol fractions. Although there were higher activities in gingerol, the improvement was almost equal to that by oleoresin. Shogaol did not show better improvement except at higher concentration. It could be concluded that treatment with single bioactive compound, such as gingerol, did not show significant effects compared to oleoresin, the crude extract. In human study, involving healthy male adult, the improvement of NK cell lysing activity was again demonstrated and even more apparent. The mechanism involved in the protection seemed to be through the antioxidant activity of gingerol. However, other mechanism underlying the improvement of NK cell lysing activity must be involved since this improvement seemed to be specifically toward NK cell activity. Since NK cells ave specific for the elimination of virus-infected cell and mutated cells, this positive effect on the immune system are very interesting. This work has also scientifically proved that the traditional beliefs that ginger had preventive effects on common cold appeared to be reasonable.

Improvement of Properties of Silica-Filled SBR Compounds Using NBR: Influence of Separate Load of SBR and NBR (NBR를 이용한 실리카로 보강된 SBR 배합물의 특성 향상 : SBR과 NBR의 분리 첨가 배합의 영향)

  • Choi, Sung-Seen;Kim, Beom-Tae
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.29-36
    • /
    • 2005
  • Mixing condition and procedure affect properties or a filled rubber compound such as filler dispersion, viscosity, and bound rubber formation. Influence of separate load of styrene-butadiene rubber (SBR) and acrylonitrile-butadiene rubber (NBR) on properties or silica-filled SBR compounds containing NBR was studied. Cure time and cure rate became faster as NBR content increased. The crosslink density increased with increase in the NBR content. The bound rubber content also increased as the NBR content increased. NBR content of the bound rubber was higher than that of the compounded rubber. The bound rubber content was higher when SBR and NBR were loaded separately than when loading simultaneously. The cure time and cure rate were slower for the separate load than for the simultaneous one. The crosslink density was also lower for the former case than for the latter one.

Optimization of Cultivation and Extraction Conditions of Pupae-Cordyceps for Cordycepin Production

  • Turk, Ayman;Kim, Beom Seok;Ko, Sung Min;Yeon, Sang Won;Ryu, Se Hwan;Kim, Young-Guk;Hwang, Bang Yeon;Lee, Mi Kyeong
    • Natural Product Sciences
    • /
    • v.27 no.3
    • /
    • pp.187-192
    • /
    • 2021
  • Cordycepin is a characteristic bioactive compound of Cordyceps militaris with various beneficial effects. Cordyceps grows on both grains and insects, and the content of cordycepin varies depending on the cultivation conditions. In this study, the effect of culture conditions on the cordycepin content was analyzed and the extraction conditions were optimized. Analysis of cordycepin content in Pupae-Cordyceps found that it was highly affected by temperature in culture conditions. In the case of mycelium, it grows well at 20 and 25 ℃, but not at 30 ℃. However, the content of cordycepin was highest at 30℃ and less at 20 ℃. The fruiting body also showed a similar tendency: growth was 20 ℃ > 25 ℃ > 30 ℃, but the cordycepin content was 30 ℃ > 25 ℃ > 20 ℃. The content of cordycepin decreased after the fruiting bodies were produced. Next, extraction conditions such as solvent and time were optimized for maximum cordycepin content using response surface methodology (RSM). There was a large difference in the content of cordycepin according to the content of ethanol and the extraction temperature. Through RSM, it was confirmed that the optimum condition for extraction of cordycepin was 48.9 ℃ using 49.0% ethanol, and 160.9 mg/g extract could be obtained under this condition. In conclusion, this study suggested the optimized conditions for the cultivation and extraction of Pupae-Cordyceps for maximizing the content of cordycepin, and this may be applied to the discovery of materials using cordycepin.

Effects of Ecklonia cava Extract on Neuronal Damage and Apoptosis in PC-12 Cells against Oxidative Stress

  • Shin, Yong Sub;Kim, Kwan Joong;Park, Hyein;Lee, Mi-Gi;Cho, Sueungmok;Choi, Soo-Im;Heo, Ho Jin;Kim, Dae-Ok;Kim, Gun-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.584-591
    • /
    • 2021
  • Marine algae (seaweed) encompass numerous groups of multicellular organisms with various shapes, sizes, and colors, and serve as important sources of natural bioactive substances. The brown alga Ecklonia cava Kjellman, an edible seaweed, contains many bioactives such as phlorotannins and fucoidans. Here, we evaluated the antioxidative, neuroprotective, and anti-apoptotic effects of E. cava extract (ECE), E. cava phlorotannin-rich extract (ECPE), and the phlorotannin dieckol on neuronal PC-12 cells. The antioxidant capacities of ECPE and ECE were 1,711.5 and 1,050.4 mg vitamin C equivalents/g in the ABTS assay and 704.0 and 474.6 mg vitamin C equivalents/g in the DPPH assay, respectively. The dieckol content of ECPE (58.99 mg/g) was approximately 60% higher than that of ECE (36.97 mg/g). Treatment of PC-12 cells with ECPE and ECE increased cell viability in a dose-dependent manner. Intracellular oxidative stress in PC-12 cells due to ECPE and ECE decreased dose-independently by up to 63% and 47%, respectively, compared with the stress control (323%). ECPE reduced the production of the pro-apoptotic proteins Bax and caspase-3 more effectively than ECE. Early and late apoptosis in PC-12 cells were more effectively decreased by ECPE than ECE treatments. From the results obtained in this study, we concluded that ECPE, which is rich in phlorotannins, including the marker compound dieckol, may be applied to the development of functional materials for improving cognition and memory.