• Title/Summary/Keyword: natural antibiotic

Search Result 250, Processing Time 0.025 seconds

Activity of Essential Oil from Mentha piperita against Some Antibiotic-Resistant Streptococcus pneumoniae Strains and Its Combination Effects with Antibiotics

  • Choi, Sung-Hee;Shin, Seung-Won
    • Natural Product Sciences
    • /
    • v.13 no.2
    • /
    • pp.164-168
    • /
    • 2007
  • To investigate natural antibiotics from plant essential oils and to evaluate their synergism with current antimicrobial drugs in inhibiting antibiotic-resistant strains of Streptococcus pneumoniae. The minimal inhibitory concentrations (MICs) of eleven plant essential oils and their main components were established for two antibiotic-susceptible and two antibiotic-resistant strains of S. pneumoniae, using broth microdilution tests. Potential synergism with oxacillin, norfloxacin, or erythromycin was evaluated using a checkerboard microtitre assay. Among the tested oils, Mentha piperita oil and its main component, menthol, exhibited the strongest inhibitory activities against all of the tested strains. The activity of antibiotics against antibiotic-resistant strains of S. pneumoniae was enhanced significantly by combination with Mentha piperita oils and its main component, menthol. In conclusion, the combination Mentha piperita essential oil or menthol with antibiotics could be used to reduce the effective dose of antibiotic and to modulate the resistance of S. pneumoniae strains.

Anticaries Activity of Antimicrobial Material from Bacillus alkalophilshaggy JY-827

  • Chun, Ju-Yean;Ryu, Il-Hwan;Park, Jung-Sun;Lee, Kap-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.18-24
    • /
    • 2002
  • The present study was performed to investigate the excellent microbial anticaries substance, aminoglycoside antibiotic, which is more effective than chlorhexidine for the treatment of dental caries. The aminoglycoside antibiotic against Streptococcus mutans JC-2 from a novel alkaliphilic Bacillus alkalophilshaggy JY-827 exhibited no significant difference at the treatment concentration of $2.5{\times}10^{-7}M$, however, it inhibited the activity of the Streptococcus mutans glucosyltransferase by 70.2% and 99.8% at the concentrations of $2.5{\times}10^{-7}$M\;and\;2.5{\times}10^{-6}M$, respectively. Lineweaver-Burk plot of the inhibitory aminoglycoside antibiotic showed competitive inhibition, with $K_i$ value of $6.4{\times}10^{-6}$ M. The aminoglycoside antibiotic did not show any cytotoxicity against human gingival cells. To evaluate the industrial applicability of the aminoglycoside antibiotic, a toothpaste containing this substance was prepared and tested on the extracted human teeth. The inhibitory rate of tooth calcification and calcium ion elution by the aminoglycoside antibiotic were 50% and 2.5 times, respectively. These results suggested that the aminoglycoside antibiotic from Bacillus alkalophilshaggy JY-827 is an effective agent against dental caries.

Iron Increases Susceptibilities of Pseudomonas aeruginosa to Ofloxacin by Increasing the Permeability

  • Kim, Sookyoung;Kim, Jinsook;Hyeran Nam;Yusun Jung;Lee, Yeohee
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.265-269
    • /
    • 2000
  • Iron increased the susceptibilities of clinical isolates Pseudomonas aeruginosa to quinolones. In the presence of iron, increased susceptibilities to ofloxacin were observed in twenty-six out of thirty isolates and with no change in four isolates. In the case of norfloxacin, iran increased susceptibilities of twelve isolates but did not render any change in eighteen isolates. In the case of ciprofloxacin, iron decreased the MICs (Minimal Inhibitory Concentration) of twenty isolates, increased the MIC of one isolate, and did net change the MICs of nine isolates. To find out how iron increased susceptibility to ofloxacin, bacterial cells were grown in Muller Hinton (MH) media and succinate minimal media (SMM) to induce iran acquisition systems and the intracellular ofloxacin concentrations were assayed in the presence of iron. The addition of iron to the media decreased the MICs of cells whether they were grown in MH or SMM. Siderophores, carbonyl cyanide m-chlorophenylhydrazone (an inhibiter of proton motive force), and ouabain (an inhibitor of ATPase) did not decrease the effect of iron. Results suggested that the increase in the intracellular ofloxacin concentration by iron is accomplished not by decreasing the efflux but by increasing the of ofloxacin permeability.

  • PDF

Cystocin, a Novel Antibiotic, Produced by Streptomyces sp. GCA0001: Production and Characterization of Cystocin

  • Sohng, Jae-Kyung;Lee, Hei-Chan;Liou, Kwang-Kyoung;Lee, Eui-Bok;Kang, Sun-Yub;Woo, Jin-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.483-486
    • /
    • 2003
  • 3'-[S-Methyl-cysteinyl]-3'-amino-3'-deoxy-N,N- dimethyl adenosine, cystocin, is a biosynthesized antibiotic material newly identified from Streptomyces sp. GCA0001. Its structure was found to be similar to puromycin, where the terminal tyrosine is replaced by a methyl cysteine. NMR data prove that the 3-ammo ribose is connected to dimethylaminopurine through the anomeric carbon at 1'-carbon. The methyl cysteinyl unit is connected to the amino unit of ribose by peptide bond. The verification of the structure was performed by comparing the puromycin nucleosides resulted from the hydrolysis of cystocin and puromycin, respectively. Antibiotic activity of cystocin against Streptococcus was found to be two times more potent than that of puromycin.

Antibiotic Resistance of Hemolytic Escherichia coli Isolated from Animals in Korea (동물에서 분리된 용혈성 대장균의 항생제 내성)

  • Lee, Gye-Nam;Park, Yong-Ho;Jeong, Byeong-Yeol;Lee, Yeon-Hui
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.293-295
    • /
    • 2003
  • Total 70 isolates of Escherichia coli obtained from pigs were studied. Forty four isolates had $\textregistered$-hemolytic activity which was heat labile. Minimum inhibitory concentration test indicated that 40 isolates (57.1%), 15 isolates (21.4%), 23 isolates (32.9%), and 5 isolates (7.1%) were resistant to ampicillin, cephalothin, gentamicin, and norfloxacin, respectively. None of them were extended spectrum $\textregistered$-lactamases (ESBLs) producer when the double disk synergy test (DDST) was performed.

An Antifungal Antibiotic Purified from Bacillus megaterium KL39, a Biocontrol Agent of Red-Pepper Phytophthora-Blight Disease

  • JUNG HEE KYOUNG;KIM SANG-DAL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1001-1010
    • /
    • 2005
  • Bacillus megaterium KL39, an antibiotic-producing plant growth promoting rhizobacterium (PGPR), was selected from soil. The antifungal antibiotic, denoted KL39, was purified from culture filtrate by column chromatography using Dion HP-20, Silica gel, Sephadex LH-20, and prep-HPLC. Thin layer chromatography, employing the solvent system of ethanol:ammonia:water=8:1:1, showed the $R_{f}$. value of 0.32. The antibiotic KL39 showed a negative reaction with ninhydrin solution, positive with iodine vapor, and also positive with Ehrlich reagent. It was soluble in methanol, ethanol, butanol, and acetonitrile, but insoluble in chloroform, toluene, hexane, ethyl ether, or acetone. Its UV spectrum had the maximum absorption at 208 nm. Amino acid composition, FAB-mass, $^{1}H-NMR,\;^{13}C-NMR$, and atomic analyses showed that the antibiotic KL39 (MW=1,071) has a structure very similar to iturin E. The antibiotic KL39 has a broad antifungal spectrum against a variety of plant pathogenic fungi including Rhizoctonia solani, Pyricularia oryzae, Monilinia froeticola, Botrytis cinenea, Altenaria kikuchiana, Fusarium oxysporum, and F. solani. An MIC value of $10\;{\mu}g/ml$ was determined for Phytophthora capsici. Macromolecular incorporation studies with P. capsici using radioactive [$^{3}H-adenine$] as the precursor, indicated that the antibiotic KL39 strongly inhibits the DNA biosynthesis of the fungal cell. Microscopic observation of the antifungal action showed abnormal hyphal swelling of P. capsici. The purified antibiotic KL39 was very effective for the biocontrol of in vivo Phytophthora-blight disease of pepper.

Synergistic Killing Effect of Synthetic Peptide P20 and Cefotaxime on Methicillin-Resistant Nosocomial Isolates of Staphylococcus aureus

  • Jung, Hyun-Jun;Choi, Kyu-Sik;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1039-1046
    • /
    • 2005
  • The salt resistance of antibacterial activity and synergistic effect with clinically used antibiotic agents are critical factors in developing effective peptide antibiotic drugs. For this reason, we investigated the resistance of antibacterial activity to antagonism induced by NaCl and $MgCl_2$ and the synergistic effect of P20 with cefotaxime. P20 is a 20-residue synthetic peptide derived from a cecropin A (CA)-melittin(ME) hybrid peptide. In this study, P20 was found to have potent antibacterial activity against clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) strains without hemolytic activity against human erythrocytes. The combination study revealed that P20 in combination with cefotaxime showed synergistic antibacterial activity in an energy-dependent manner. We also confirmed the synergism between P20 and cefotaxime by fluorescence-activated flow cytometric analysis by staining bacterial cells with propidium iodide (PI) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol (BOX). This study suggests that P20 may be useful as a therapeutic antibiotic peptide with synergistic effect in combination with conventional antibiotic agents.

Control Efficacy of Different Types of Chemicals with Different Spraying Schedules on Plum Bacterial Black Spot (약제별 및 살포시기별 자두 검은점무늬병 방제효과)

  • Ryu, Young Hyun;Lee, Joong Hwan;Kwon, Tae Young;Kim, Seung Han;Kim, Dong Geun
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.349-353
    • /
    • 2012
  • Xanthomonas arboricola pv. pruni causes black spot symptom on fruit of plum, resulting in yield loss by reduction of marketable fruit production. To develop an effective control program, some chemicals were sprayed in various scheme during dormant season and growing season after blooming period. Copper-based chemicals were sprayed during dormant season and antibiotic-based chemicals were sprayed during fruit growing season. Sprays of antibiotic-based chemicals in growing season was more effective than copper-based chemicals sprays in dormant season. Three applications of antibiotic-based chemicals in 10 days interval starting 10 days after full blooming controlled disease incidence as much as 93%, whereas applications of copper-based chemicals in dormant season controlled 26-42%. Antibiotic-based chemicals application starting 10 days after full blooming was more effective than starting 20 or 30 days after full blooming.

Plasmid Sequence Data Analysis to Investigate Antibiotic Resistance Gene Transfer among Swine, Swine Farm and Their Owners (돼지와 양돈장 및 농장 관계자 간에 발생하는 항생제 내성 유전자 전파 조사를 위한 플라스미드 염기서열 분석)

  • Yujin Jeong;Sunwoo Lee;Jung Sik Yoo;Dong-Hun Lee; Tatsuya Unno
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.269-278
    • /
    • 2023
  • Antibiotics either kill or inhibit the growth of bacteria. However, antibiotic-resistant bacteria are difficult to treat with antibiotics. Infections caused by such bacteria often lead to severe diseases. Antibiotic resistance genes (ARG) can be horizontally transmitted across different bacterial species, necessitating a comprehensive understanding of how ARGs spread across various environments. In this study, we analyzed the plasmid sequences of 33 extended-spectrum beta-lactamases (ESBL) producing Escherichia coli isolated from pigs, farms, and their owners. We conducted an antibiotic susceptibility test (AST) with aztreonam and seven other antibiotics, as well as whole genome sequencing (WGS) of the strains using MinION. Our results demonstrated that the plasmids that did not harbor ARGs were mostly non-conjugative, whereas the plasmids that harbored ARGs were conjugative. The arrangement of these ARGs exhibited a pattern of organization featuring a series of ARG cassettes, some of which were identical across the isolates collected from different sources. Therefore, this study suggests that the sets of ARG cassettes on plasmids were mostly shared between pigs and their owners. Hence, enhanced surveillance of ARG should be implemented in farm environments to proactively mitigate the risk of antibiotic-resistant bacterial infections.