• Title/Summary/Keyword: national core interest

Search Result 141, Processing Time 0.025 seconds

Efficient Hybrid Transactional Memory Scheme using Near-optimal Retry Computation and Sophisticated Memory Management in Multi-core Environment

  • Jang, Yeon-Woo;Kang, Moon-Hwan;Chang, Jae-Woo
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.499-509
    • /
    • 2018
  • Recently, hybrid transactional memory (HyTM) has gained much interest from researchers because it combines the advantages of hardware transactional memory (HTM) and software transactional memory (STM). To provide the concurrency control of transactions, the existing HyTM-based studies use a bloom filter. However, they fail to overcome the typical false positive errors of a bloom filter. Though the existing studies use a global lock, the efficiency of global lock-based memory allocation is significantly low in multi-core environment. In this paper, we propose an efficient hybrid transactional memory scheme using near-optimal retry computation and sophisticated memory management in order to efficiently process transactions in multi-core environment. First, we propose a near-optimal retry computation algorithm that provides an efficient HTM configuration using machine learning algorithms, according to the characteristic of a given workload. Second, we provide an efficient concurrency control for transactions in different environments by using a sophisticated bloom filter. Third, we propose a memory management scheme being optimized for the CPU cache line, in order to provide a fast transaction processing. Finally, it is shown from our performance evaluation that our HyTM scheme achieves up to 2.5 times better performance by using the Stanford transactional applications for multi-processing (STAMP) benchmarks than the state-of-the-art algorithms.

PCM/Nylon6 복합사 염착특성

  • Lee, Jun-Hee;Kim, Hyung-Joo;Yim, Sang-Hyun;Im, Jung-Nam;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.35-35
    • /
    • 2011
  • Phase change material(PCM) has thermal energy storage and been attracted attention. Latent heat of the organic PCM can keep maintaining temperature when the change of outside energy conditions influence to PCM. Thus, many researchers have interested to thermal energy storage ability and investigated to applications such as thermal storage of solar energy, bioclimatic building, icebank, medical application, clothing industry and so on. Among the many applications, investigation of the PCM in clothing industry is also important because the people has interest functional factor called health-care in the clothing. In addition, PCM can give them mild environment condition such suitable temperature control or humidity. To fabrics, the PCM has various methods such as microcapsule, padding and modified cross-section formation(Sheath/core). Sheath core PCM fabric has a better benefit of durability than other method. However, PCM sheath/core spinning is difficult. In addition, dyeing property is important to use clothing industry due to visual images. In this study, we investigated dyeing properties of Nylon/PCM sheath/core fabrics. Especially, we observed the relation between dyeing property and PCM including ratio. Various temperature and pH conditions were also studied to optimize dyeing properties as acid dye.

  • PDF

Use of Monte Carlo code MCS for multigroup cross section generation for fast reactor analysis

  • Nguyen, Tung Dong Cao;Lee, Hyunsuk;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2788-2802
    • /
    • 2021
  • Multigroup cross section (MG XS) generation by the UNIST in-house Monte Carlo (MC) code MCS for fast reactor analysis using nodal diffusion codes is reported. The feasibility of the approach is quantified for two sodium fast reactors (SFRs) specified in the OECD/NEA SFR benchmark: a 1000 MWth metal-fueled SFR (MET-1000) and a 3600 MWth oxide-fueled SFR (MOX-3600). The accuracy of a few-group XSs generated by MCS is verified using another MC code, Serpent 2. The neutronic steady-state whole-core problem is analyzed using MCS/RAST-K with a 24-group XS set. Various core parameters of interest (core keff, power profiles, and reactivity feedback coefficients) are obtained using both MCS/RAST-K and MCS. A code-to-code comparison indicates excellent agreement between the nodal diffusion solution and stochastic solution; the error in the core keff is less than 110 pcm, the root-mean-square error of the power profiles is within 1.0%, and the error of the reactivity feedback coefficients is within three standard deviations. Furthermore, using the super-homogenization-corrected XSs improves the prediction accuracy of the control rod worth and power profiles with all rods in. Therefore, the results demonstrate that employing the MCS MG XSs for the nodal diffusion code is feasible for high-fidelity analyses of fast reactors.

Development of a drift-flux model based core thermal-hydraulics code for efficient high-fidelity multiphysics calculation

  • Lee, Jaejin;Facchini, Alberto;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1487-1503
    • /
    • 2019
  • The methods and performance of a pin-level nuclear reactor core thermal-hydraulics (T/H) code ESCOT employing the drift-flux model are presented. This code aims at providing an accurate yet fast core thermal-hydraulics solution capability to high-fidelity multiphysics core analysis systems targeting massively parallel computing platforms. The four equation drift-flux model is adopted for two-phase calculations, and numerical solutions are obtained by applying the Finite Volume Method (FVM) and the Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)-like algorithm in a staggered grid system. Constitutive models involving turbulent mixing, pressure drop, and vapor generation are employed to simulate key phenomena in subchannel-scale analyses. ESCOT is parallelized by a domain decomposition scheme that involves both radial and axial decomposition to enable highly parallelized execution. The ESCOT solutions are validated through the applications to various experiments which include CNEN $4{\times}4$, Weiss et al. two assemblies, PNNL $2{\times}6$, RPI $2{\times}2$ air-water, and PSBT covering single/two-phase and unheated/heated conditions. The parameters of interest for validation include various flow characteristics such as turbulent mixing, spacer grid pressure drop, cross-flow, reverse flow, buoyancy effect, void drift, and bubble generation. For all the validation tests, ESCOT shows good agreements with measured data in the extent comparable to those of other subchannel-scale codes: COBRA-TF, MATRA and/or CUPID. The execution performance is examined with a mini-sized whole core consisting of 89 fuel assemblies and for an OPR1000 core. It turns out that it is about 1.5 times faster than a subchannel code based on the two-fluid three field model and the axial domain decomposition scheme works as well as the radial one yielding a steady-state solution for the OPR1000 core within 30 s with 104 processors.

An Analysis of Core Competence and Core Element on the STEAM Program in the Research Report of School (학교연구보고서에 제시된 STEAM 프로그램의 핵심 역량 및 요소 분석)

  • Shin, Jin-Kyung;Choi, Dong-Kyu;Kim, Ji-Won;Heo, Gyun;Park, Jong-Un;Ju, Dong-Beom;Won, Hyo-Heon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.4
    • /
    • pp.898-914
    • /
    • 2013
  • The fusion type human resources, it is a new human resources to scientific and technical information society of the future demands, and means to enjoy life with a creativity and expertise of fusion of various fields, to communicate in consideration of others. Fusion human resource education(STEAM), of "human resources to practice respect and compassion", "human resources equipped with communication skills", "human resources to pursue creativity and innovation" "human resources to understand the knowledge of the fusion to take advantage" in training I have presented to the area of core competence of the 4C 'Creativity"," Communication","Convergence', 'Caring'. In this study, the area of c ore competency for each element by elementary, middle, and high schools around the analysis of the target can be made by each school level to develop a practical program in the sense of basic research is to conduct. The findings are as follows: First, Area of Creativity, communication area, the contents fusion region, as well as care areas, to the detailed item capacity, the design of the class that contains the entire area should be performed. Second, Elementary and secondary school level analysis, design of the class containing the entire region up to capacity detail is required. High school was required study of school full of normal. Third, In general, for STEAM class environment and teaching model was developed by applying operations. Research and methods of teaching a wider variety of form was required. Later in this study is to develop programs and organize. and It intends to become the base to be able to interest and interest in science education by structured around the status of problems that can be found in the life of around themes STEAM.

Stabilization of High Nickel Cathode Materials with Core-Shell Structure via Co-precipitation Method (공침법을 통하여 합성된 코어-쉘 구조를 가지는 하이 니켈 양극 소재 안정화)

  • Kim, Minjeong;Hong, Soonhyun;Jeon, Heongkwon;Koo, Jahun;Lee, Heesang;Choi, Gyuseok;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.216-222
    • /
    • 2022
  • The capacity of high nickel Li(NixCoyMn1-x-y)O2 (NCM, x ≥ 0.8) cathodes is known to rapidly decline, a serious problem that needs to be solved in a timely manner. It was reported that cathode materials with the {010} plane exposed toward the outside, i.e., a radial structure, can provide facile Li+ diffusion paths and stress buffer during repeated cycles. In addition, cathodes with a core-shell composition gradient are of great interest. For example, a stable surface structure can be achieved using relatively low nickel content on the surface. In this study, precursors of the high-nickel NCM were synthesized by coprecipitation in ambient atmosphere. Then, a transition metal solution for coprecipitation was replaced with a low nickel content and the coprecipitation reaction proceeded for the desired time. The electrochemical analysis of the core-shell cathode showed a capacity retention of 94 % after 100 cycles, compared to the initial discharge capacity of 184.74 mA h/g. The rate capability test also confirmed that the core-shell cathode had enhanced kinetics during charging and discharging at 1 A/g.

Pressure drop characteristics of concentric spiral corrugation cryostats for a HTS power cable considering core surface roughness

  • Youngjun Choi;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.19-24
    • /
    • 2023
  • Recently, interest in renewable energy such as solar and wind power has increased as an alternative to fossil fuels. Renewable energy sources such as large wind farms require long-distance power transmission because they are located inland or offshore, far from the city where power is required. High-Temperature Superconducting (HTS) power cables have more than 5 times the transmission capacity and less than one-tenth the transmission loss compared to the existing cables of the same size, enabling large-capacity transmission at low voltage. For commercialization of HTS power cables, unmanned operation and long-distance cooling technology of several kilometers is essential, and pressure drop characteristic is important. The cryostat's spiral corrugation tube is easier to bend, but unlike the round tube, the pressure drop cannot be calculated using the Moody chart. In addition, it is more difficult to predict the pressure drop characteristics due to the irregular surface roughness of the binder wound around the cable core. In this paper, a CFD model of a spiral corrugation tube with a core was designed by referring to the water experiments from previous studies. In the four cases geometry, when the surface roughness of the core was 10mm, most errors were 15% and the maximum errors were 23%. These results will be used as a reference for the design of long-distance HTS power cables.

Optimal Microgrid Operation Considering Fuel Cell and Combined Heat and Power Generation (연료전지와 열병합 발전을 고려한 마이크로그리드의 최적 운용)

  • Lee, Ji-Hye;Lee, Byung Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.596-603
    • /
    • 2013
  • The increase of distributed power generation is closely related to interest in microgird including renuable energy sources such as photovoltaic (PV) systems and fuel cell. By the growing interest of microgrid all over the world, many studies on microgrid operation are being carried out. Especially operation technique which is core technology of microgrid is to supply heat and electricity energy simultaneously. Optimal microgrid scheduling can be established by considering CHP (Combined Heat and Power) generation because it produce both heat and electricity energy and its total efficiency is high. For this reason, CHP generation in microgrid is being spotlighted. In the near future, wide application of microgrid is also anticipated. This paper proposes a mathematical model for optimal operation of microgrid considering both heat and power. To validate the proposed model, the case study is performed and its results are analyzed.

Characteristics Analysis of a Direct-Drive AFPM Generator (직접 구동 AFPM 풍력발전기의 특성해석)

  • Seo, Young-Taek;Kim, Hyoung-Gil;Kong, Jeong-Sik;Kim, Chul-Ho;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.687-689
    • /
    • 2003
  • Recently, issues regarding environment and the diversification of dependence in oil are watched with keen interest. Wind power attracts most interest because of its high-energy efficiency with environment friendly functions. The paper discusses the development of a coreless axial-flux permanent magnet (AFPM) generator for a wind power system. Analyzed the Coreless AFPM generator by electromagnetic, and designed wind power generator with this. The 3 phase output of stator is rectified and fed to a common do link. The overall machine structure has high compactness and lightness, because of the lack of the iron core. The test results with a resistive load confirm the satisfactory operation of generator. Compared with conventional generator, the design has lower weight, lower Power loss and improved efficiency.

  • PDF

Possibilities and Problems for the Regional Innovation in Japan

  • Matsubara, Hiroshi
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.362-374
    • /
    • 2008
  • Under a knowledge-based economy, regional innovation policies have been treated as important regional policies. In this paper, the author attempts to argue the possibilities and problems for regional innovation in Japan. For this purpose, the author has investigated the development of industry-academy-government collaboration in Ube City which has been designated as one of a number of knowledge cluster projects by the National Government. Ube City is a typical company town and the regional system had been characterized by the vertical relationship between a core company and it's subcontractors. Since the late 19905, the local national university has played an important role to promote cooperation with various types of enterprises, research institutions, and local governments. As such horizontal relationships have become more influential, it is necessary to overcome the gap in interest and knowledge base between the core company and the local university.

  • PDF