• 제목/요약/키워드: national AI competitiveness

검색결과 43건 처리시간 0.022초

자율화 MUM-T 국방산업 전략 (Strategies for Autonomous MUM-T Defense Industry)

  • 김병운
    • 항공우주시스템공학회지
    • /
    • 제17권2호
    • /
    • pp.56-61
    • /
    • 2023
  • 최근 국내·외 적으로 AI 기반의 MUM-T 복합전투체계 고도화와 이를 통한 산업의 활성화가 글로벌 이슈로 급부상하고 있다. 그러나 우리의 국방부 방위사업법은 무기체계 자체기기 중심으로 MUM-T 실증이 이루어져 무기체계의 운용 부분에 대한 고도화에 NATO 선도국 대비 다소 미흡한 것으로 판단된다. 우리의 미래 글로벌 UGV, UAV, UMS 등 MUM-T 복합전투체계의 국제경쟁력 강화를 위해서는 자율화 MUM-T 개념 정립, 자율화·상호운용성·데이터 표준화 기반의 국방 AI MUM-T 최상위 플랫폼 구축과 운용, 국가과학기술자문회의와 같은 대통령소속의 국방혁신위원회의 신설과 심의·자문 기능 강화·추가가 요구된다.

해외 주요국의 국방AI 현황 연구 (A study on the current status of defense AI in major foreign countries)

  • 이지은;이지선;류종수
    • 한국국방기술학회 논문지
    • /
    • 제5권1호
    • /
    • pp.19-24
    • /
    • 2023
  • 신기술의 발전으로 인해 미래 전장의 모습은 지금과는 크게 달라질 것으로 예상된다. 특히 AI와 로봇이 전장의 주역으로 참여하고 이들의 성능이 고도화될 경우 전쟁 결과는 예측하기 어려워질 것이다. 이에 미국, 중국을 비롯한 주요 국가들은 인공지능(AI)을 국가 경쟁력과 미래전의 양상을 바꿀 수 있는 핵심기술 및 게임체인저로 판단하고 관련기술 선점과 AI무기체계 개발에 국가 차원의 총력을 기울이고 있으며, 따라서 세계 각국은 국방AI를 추진하기 위한 전략 수립과 정책 마련은 물론 관련 조직 신설 등 인프라 확충에도 적극적으로 나서고 있다. 우리 군도 육군이 조직과 업무수행체계 면에서 가장 선도적으로 국방AI를 추진하고 있으나, 이를 국방 차원에서 통합적으로 관리하고 조정통제하는 거버넌스 부재로 어려움과 혼란을 겪고 있는 것이 현실이다. 최근 국방AI센터(가칭) 창설의 필요성에 대한 공감대가 형성되고 있는 가운데 연구자는 미국, 영국, 호주 등 해외 주요국의 국방AI 추진현황을 분석하고 국방AI 정책 수립에 관한 몇 가지 시사점을 제시하고자 한다.

  • PDF

The Interaction between Labor Productivity and Competitiveness in Vietnam

  • DONG, Nguyen Thi;DIEM, Tran Thi Ai;CHINH, Bui Thi Hong;HIEN, Nguyen Thi Diu
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권11호
    • /
    • pp.619-627
    • /
    • 2020
  • This study measures the relationship between labor productivity and national competitiveness. Through the shift- share analysis method, the paper has separated labor productivity into three factors: static shift effect, dynamic shift effect and endogeneous effect. Next, in combination with the Granger causality test, the paper examines the relationship between the factors constituting labor productivity and competitiveness during the period from 2005 to 2017. Research data is collected from General Statistics Office and annual global competitiveness reports. The results show that the interaction between labor productivity with global competitiveness index (GCI) in Vietnam has similar variation. Nevertheless, when separating labor productivity into three effects, this relationship shows more clearly that the impact of labor productivity on GCI scores is mainly caused by endogeneous effect, not by static shift effect or dynamic shift effect. Therefore, in order to improve its competitiveness, Vietnam should focus on a number of solutions: reforming the education system towards developing thinking capacity and creative capacity; fostering industrial manners to create dynamic and flexible workers; building the State with sufficient capacity to implement consistent and transparent policies; formulating policies to attract all economic sectors so that they actively participate in the field of human resource training for the country.

특허데이터 기반 한국의 인공지능 경쟁력 분석 : 특허지표 및 토픽모델링을 중심으로 (Analysis of Korea's Artificial Intelligence Competitiveness Based on Patent Data: Focusing on Patent Index and Topic Modeling)

  • 이현상;차오신;신선영;김규리;오세환
    • 정보화정책
    • /
    • 제29권4호
    • /
    • pp.43-66
    • /
    • 2022
  • 인공지능 기술의 발전과 더불어 세계 각국의 인공지능 기술 특허를 둘러싼 경쟁도 치열해지고 있다. 2000년~2021년간 미국 특허청의 인공지능 기술 특허출원은 꾸준히 증가하고 있는 가운데 2010년대 들어 보다 가파른 성장세를 기록하고 있다. 특허지표를 통해 한국의 인공지능 기술경쟁력을 분석한 결과, 청각지능, 시각지능 등의 세부 분야에서 특허활동성, 영향력, 시장성 등이 우위에 있는 것으로 평가된다. 그러나, 주요국과 비교하여 한국의 인공지능 기술 특허는 양적 활동성, 시장성 확보 측면에서는 상대적으로 우수하나 기술 파급력은 다소 열위에 있는 것으로 나타난다. 최근 인공지능 기술 토픽으로 노이즈 캔슬링, 음성인식 등은 감소한 반면 모델학습 최적화, 스마트센서, 자율주행 등이 활성화되면서 성장이 기대되고 있다. 한국의 경우 사기탐지/보안, 의료 비전러닝 등의 분야에서 특허출원 성과가 다소 부족하여 분발이 요구된다.

논문 키워드 분석을 통한 인공지능의 주요 이슈에 관한 고찰 : 사회과학 분야의 KCI 등재학술지를 중심으로 (A Study on Major Issues of Artificial Intelligence Using Keyword Analysis of Papers: Focusing on KCI Journals in the Field of Social Science)

  • 정도범;유화선;문희진
    • 한국콘텐츠학회논문지
    • /
    • 제22권7호
    • /
    • pp.1-9
    • /
    • 2022
  • 오늘날, 인공지능이 국가 경쟁력의 핵심 동력으로 부상하였으나, 사회적으로 예상치 못한 부작용도 초래하고 있다. 본 연구는 사회과학 분야의 KCI 등재학술지를 대상으로 인공지능에 관한 논문을 수집하여 사회적 측면의 주요 이슈를 고찰하고자 한다. 따라서 2016년부터 2020년까지 논문에 대한 키워드 분석을 수행하였다. 분석 결과, '로봇', '교육'에 대한 키워드가 가장 많이 나타났으며, 키워드 네트워크를 통해 상위 6개의 군집(이슈)을 도출하였다. 주요 이슈는 인공지능의 등장 배경이나 기본적인 개념, 인공지능 교육, 인공지능의 부작용, 인공지능 기반 창작물의 법적 이슈, 인공지능 제품/서비스의 이용의도, 인공지능 윤리 등을 제시할 수 있다. 본 연구 결과는 인공지능의 사회적 측면에 대한 논의를 확산하고, 국가 차원의 정책 방향을 모색하는데 활용할 수 있을 것이다.

주얼리 비즈니스를 위한 협업형 AI의 분석 연구 (An Analysis Study on Collaborative AI for the Jewelry Business)

  • 강혜림
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.305-310
    • /
    • 2024
  • 생성형 AI의 등장으로 AI는 인류와 본격적인 공존을 시작하였다. 방대한 데이터 기반의 AI 학습역량은 인간의 학습과는 다른 차원의 생산성으로 산업체에서 활용되고 있다. 그럼에도 불구하고 AI는 테크노포비아와 같은 어두운 이면의 사회적 현상도 보인다. AI에 대한 이해를 바탕으로 협업이 가능한 AI 모델을 분석하고 주얼리 산업에서 활용이 가능한 분야를 확인한다. 협업형 AI 모델을 활용하면 '아이디어 전개의 가속화', '디자인 역량의 강화', '생산성 강화' , '멀티모달 기능의 내재화' 등을 기대할 수 있다. 결국 AI는 협업이 가능한 도구적 관점에서 활용해야 하며, 이를 위해서는 주체성 있는 인간 중심의 마인드 셋이 필요하다. 본 연구의 주얼리 비즈니스를 위한 AI 협업방안 제언을 통해 주얼리 산업의 경쟁력 강화에 도움이 되기를 바란다.

인공지능 적용 산업과 발전방향에 대한 분석 (Analysis of AI-Applied Industry and Development Direction)

  • 문승혁
    • 문화기술의 융합
    • /
    • 제5권1호
    • /
    • pp.77-82
    • /
    • 2019
  • 인공지능은 기술개발 속도가 가속화되어 생활, 의료, 금융 서비스 및 자율자동차 등 산업 전반에 적용되고 있다. 4차 산업혁명 시대의 핵심기술로 자리 잡고 있는 인공지능 경쟁력 확보를 위해 선진국들은 국가적 역량을 집중하고 있다. 반면 IT강국으로서의 인프라와 인적자원을 보유한 한국은 미국, 캐나다, 일본, 등 전통적인 인공지능 선진국뿐만 아니라 지능형 기술집약 산업 육성에 총력을 기울이는 후발주자 중국에도 뒤쳐져있는 상황이다. 지능정보 사회의 고도화에 따라 인공지능은 향후 국가의 산업경쟁력을 좌우할 기반기술인바, 국가적인 관심과 역량 결집이 필요하다. 또한 인공지능 기술의 종속을 막기 위하여 자체 기술개발 노력과 함께 선두업체와의 공동 개발이 중요하다. 이에 더하여 인공지능 시장 저변 확대를 위하여 제도 개선과 법률적 기반 마련이 시급하다.

중소 제조기업의 경쟁력 강화를 위한 제조AI 핵심 정책과제 도출에 관한 연구 (Discovering Essential AI-based Manufacturing Policy Issues for Competitive Reinforcement of Small and Medium Manufacturing Enterprises)

  • 김일중;김우순;김준영;채희수;우지영;도경민;임성훈;신민수;이지은;김흥남
    • 품질경영학회지
    • /
    • 제50권4호
    • /
    • pp.647-664
    • /
    • 2022
  • Purpose: The purpose of this study is to derive major policies that domestic small and medium-sized manufacturing companies should consider to maximize productivity and quality improvement by utilizing manufacturing data and AI, and to find priorities and implications. Methods: In this study, domestic and international issues and literature review by country were conducted to derive major considerations such as manufacturing AI technology, manufacturing AI talent, manufacturing AI data and manufacturing AI ecosystem. Additionally, the questionnaire survey targeting 46 experts of manufacturing data and AI industry were conducted. Finally, the major considerations and detailed factors importance were derived by applying the Analytic Hierarchy Process (AHP). Results: As a result of the study, it was found that 'manufacturing AI technology', 'manufacturing AI talent', 'manufacturing AI data', and 'manufacturing AI ecosystem' exist as key considerations for domestic manufacturing AI. After empirical analysis, the importance of the four key considerations was found to be 'manufacturing AI ecosystem (0.272)', 'manufacturing AI data (0.265)', 'manufacturing AI technology (0.233)', and 'manufacturing AI talent (0.230)'. The importance of the derived four viewpoints is maintained at a similar level. In addition, looking at the detailed variables with the highest importance for each of the four perspectives, 'Best Practice', 'manufacturing data quality management regime, 'manufacturing data collection infrastructure', and 'manufacturing AI manpower level of solution providers' were found. Conclusion: For the sustainable growth of the domestic manufacturing AI ecosystem, it should be possible to develop and promote manufacturing AI policies in a balanced way by considering all four derived viewpoints. This paper is expected to be used as an effective guideline when developing policies for upgrading manufacturing through domestic manufacturing data and AI in the future.

교육과정과 연계된 초등학교 캠프형 SW·AI교육 콘텐츠 개발에 관한 연구 (A Study on the development of elementary school SW·AI educational contents linked to the curriculum(camp type))

  • 변영신;한정수
    • 사물인터넷융복합논문지
    • /
    • 제8권6호
    • /
    • pp.49-54
    • /
    • 2022
  • 코로나 이후 급격한 현대사회의 변화는 인공지능 인재가 국가 경쟁력을 좌우하는 주요한 영향요인으로 부각시겼다. 이에 따라 교육부에서는 인공지능 교육 공백기에 있는 초등학교 4-6학년과 중고등학생의 디지털 역량을 개발시키기 위해 대단위 SW·AI 캠프 교육 사업을 기획하였다. 이에 본 연구에서는 초등학교 4-6학년 학생들을 대상으로 하는 캠프 형 SW·AI교육프로그램을 개발하여 초등학교 4-6학년 학생들로 하여금 인공지능 기초소양을 갖추도록 하고자 한다. 이를 위해 초등학교에서의 SW·AI 교육의 의미를 정의하고 초등학교과정에서 다루어야 할 SW·AI 내용으로 'SW·AI의 이해', 'SW·AI의 원리와 활용' 및 'SW·AI의 사회적 영향'을 설정하였다. 또한 설정된 초등학교 SW·AI 교육학습 요소와 현재 초등학교에서 사용하고 있는 교과서의 관련 교과 및 단원과의 연계를 시도하였다. 교육에 사용되는 프로그램으로는 블록코딩 기반의 소프트웨어 코딩 학습 도구인 엔트리를 통하여 소프트웨어 프로그래밍 기초 역량을 강화하도록 하였으며, 모든 프로그램은 초등학생의 발달적 특징을 고려하여 경험과 체험 위주의 참여자 중심으로 운영되도록 설계하였다. 본 연구에서 이루어진 SW·AI 캠프 교육 프로그램은 방과 후 과정이나 방학 등을 이용하여 단기간에 운영되는 프로그램이다. 따라서 이를 토대로 초등학교 과정에서 SW·AI 교육이 정규교육과정의 일원으로 편성되어 운영되기 위해서는 정규교과 내용분석과 SW·AI 교육내용의 심층적인 분석을 기초로 한 연구가 필요함을 제언하는 바이다.

주얼리 산업에서의 챗GPT 활용연구 (The Research on the Use of ChatGPT in Jewelry Industry)

  • 강혜림
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.211-216
    • /
    • 2024
  • 본 연구는 AI 기술의 비약적 발전으로 등장한 챗GPT의 생산성 혁신에 연계된 기능적 측면을 살펴보고, 주얼리 산업에 적용할 수 있는 방안을 탐색하는 것에 목적이 있다. 챗GPT의 정의와 생산성을 제고시키는 특장점을 중심으로 분석하여 주얼리 제작 프로세스의 적용 범위를 파악하고 유의미한 시사점을 도출한다. 챗GPT는 '학습형', '대화형', '생성형' 모델로서의 특성을 가지며, 이를 주얼리 제작 단계에 적용하여 생산성을 향상시킬 수 있음을 확인하였다. 생성형 AI의 창조 방식에 대한 패러다임 변화가 야기하는 사회적 이슈를 확인하고, AI의 기능성과 잠재성에 대해 살펴본다. 챗GPT의 버전은 매개변수의 확장과 함께 지속적으로 업그레이드된다. 이에 따라 지속적인 연구를 수행하여 주얼리 산업체의 경쟁력을 강화하는 방향에 대해 논하고자 한다.