• Title/Summary/Keyword: nanostructured metal

Search Result 88, Processing Time 0.024 seconds

A Study of Magnetic Field Annealing on Microstructures and Magnetic Properties of Nanocomposite Sm-Co/Co Films

  • Yang, Choong-Jin;You, Cai-Yin;Zhang, Z.D.;Kim, Kyung-Soo;Han, Jong-Soo
    • Journal of Magnetics
    • /
    • v.7 no.2
    • /
    • pp.45-50
    • /
    • 2002
  • A magnetic field annealing is firstly used for nanostructured Sm-Co/Co films, prepared by magnetron sputtering method. The effects of magnetic field annealing on single-layered Sm-Co films are different from those on multi-layered Sm-Co/Co films. A detailed analysis of microstructures and magnetic properties is made by means of HRTEM, Auger electron spectroscopy, XRD and Physical Property Measurement System (PPMS). From magnetic properties and microstructure analysis, it was confirmed that these differences originate from the effects of magnetic field annealing on crystallization behavior of the films. The relationship between magnetic properties and microstructures explains a different demagnetization process of single-layered and multilayered films. For the single-layered Sm-Co films, magnetic-field-annealing makes the main phases change from $CaCu_5/ to Zn_2Th_{17}$ structure, resulting in a decrease of coercivity. The results show that the magnetic-field-annealing is useful to improve the properties of nanostructured Sm-Co(30 nm)/Co(10 nm) films, which ascribe to improving the pinning effectiveness in coercivity mechanism and decreasing the magnetostatic interaction of films. A very high coercivity about 0.7 T was obtained from nanoscaled multi-layered Sm-Co(30 nm)-/Co(10 nm) films.

Electrochemical Synthesis of Octahedral Nanostructured PbF2

  • Lee, Joon-Ho;Choi, Jin-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.463-466
    • /
    • 2011
  • In this work, we investigate anodization of Pb in ethylene glycol containing small amount of $NH_4F$, demonstrating that ${\beta}-PbF_2$ particles with octahedral morphology can be prepared by adjusting the applied potential and anodizing time. FE-SEM images and XRD measurements of anodic nanostructures as a function of anodizing time clearly show that PbO is first formed on Pb. Subsequently, a local dissolution of PbO leads to formation of skeleton structure of PbO, releasing $Pb^{2+}$ ions in the electrolyte. The lead ions can be precipitated on the walls or intersection of the skeleton walls when the concentration of lead ions is saturated. The method described in this article shows the feasibility of formation of metal fluoride crystal by anodization of metal in a fluoride containing solution.

Growth and analysis of Copper oxide nanowire

  • Park, Yeon-Woong;Seong, Nak-Jin;Jung, Hyun-June;Chanda, Anupama;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.245-245
    • /
    • 2009
  • l-D nanostructured materials have much more attention because of their outstanding properties and wide applicability in device fabrication. Copper oxide(CuO) has been realized as a p-type metal oxide semiconductor with narrow band gap of 1.2 -1.5eV. Copper oxide nanostructures can be synthesized by various growth method such as oxidation reaction, thermal evaporation thermal decomposition, sol-gel. and Mostly CuO nanowire prepared on the Cu substrate such as Copper foil, grid, plate. In this study, CuO NWs were grown by thermal oxidation (at various temperatures in air (1 atm)) of Cu metal deposited on CuO (20nm)/$SiO_2$(250nm)/Si. A 20nm-thick CuO layer was used as an adhesion layer between Cu metal and $SiO_2$

  • PDF

Photocatalytic Behaviors of Transition Metal Ions Doped TiO2 Synthesized by Mechanical Alloying (기계적 합금화법을 이용한 전이금속 도핑에 따른 TiO2분말의 광촉매 특성)

  • Woo S.H.;Kim W.W.;Kim S.J.;Rhee C.K.
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.266-272
    • /
    • 2005
  • Transition metal ions($Ni^{2+}$, $Cr^{3+}$ and $V^{5+}$) doped $TiO_2$ nanostructured powders were synthesized by mechanical alloying(MA) to shift the adsorption threshold into the visible light region. The synthesized powders were characterized by XRD, SEM, TEM and BET for structural analysis, UV-Vis and photoluminescence spectrum for the optical study. Also, photocatalytic abilities were evaluated by decomposition of 4-chlorophenol(4CP) under ultraviolet and visible light irradiations. Optical studies showed that the absorption wavelength of transition metal ions doped $TiO_2$ powders moved to visible light range, which was believed to be induced by the energy level change due to the doping. Among the prepared $TiO_2$ powders, $NiO^{2+}$ doped $TiO_2$ powders, showed excellent photooxidative ability in 4CP decomposition.

Electrospun Metal Oxide Composite Nanofibers Gas Sensors: A Review

  • Abideen, Zain Ul;Kim, Jae-Hun;Lee, Jae-Hyoung;Kim, Jin-Young;Mirzaei, Ali;Kim, Hyoun Woo;Kim, Sang Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.366-379
    • /
    • 2017
  • Nanostructured materials have attracted considerable research interest over the recent decades because of their potential applications in nanoengineering and nanotechnology. On the other hand, the developments in nanotechnology are strongly dependent on the availability of new materials with novel and engineered morphologies. Among the novel nanomaterials reported thus far, composite nanofibers (NFs) have attracted considerable attention in recent years. In particular, metal oxide NFs have great potential for the development of gas sensors. Highly sensitive and selective gas sensors can be developed by using composite NFs owing to their large surface area and abundance of grain boundaries. In composite NFs, gas sensing properties can be enhanced greatly by tailoring the conduction channel and surface properties by compositional modifications using the synergistic effects of different materials and forming heterointerfaces. This review focuses on the gas sensing properties of composite NFs synthesized by an electrospinning (ES) method. The synthesis of the composite NFs by the ES method and the sensing mechanisms involved in different types of composite NFs are presented along with the future perspectives of composite NFs.

Optically transparent and electrically conductive indium-tin-oxide nanowires for transparent photodetectors

  • Kim, Hyunki;Park, Wanghee;Ban, Dongkyun;Kim, Hong-Sik;Patel, Malkeshkumar;Yadav, Pankaj;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.390.2-390.2
    • /
    • 2016
  • Single crystalline indium-tin-oxide (ITO) nanowires (NWs) were grown by sputtering method. A thin Ni film of 5 nm was coated before ITO sputtering. Thermal treatment forms Ni nanoparticles, which act as templates to diffuse Ni into the sputtered ITO layer to grow single crystalline ITO NWs. Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction by combining of p-type NiO and n-type ZnO. A functional template of ITO nanowires was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.

  • PDF

Solution-Processed Metal Oxide Thin Film Nanostructures for Water Splitting Photoelectrodes: A Review

  • Lee, Mi Gyoung;Park, Jong Seong;Jang, Ho Won
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.185-202
    • /
    • 2018
  • Photoelectrochemical (PEC) cells can convert solar energy, the largest potential source of renewable energy, into hydrogen fuel which can be stored, transported, and used on demand. In terms of cost competitiveness compared with fossil fuels, however, both photocatalytic efficiency and cost-effectiveness must be achieved simultaneously. Improvement of cost-effective, scalable, versatile, and eco-friendly fabrication methods has emerged as an urgent mission for PEC cells, and solution-based fabrication methods could be capable of meeting these demands. Herein, we review recent challenges for various nanostructured oxide photoelectrodes fabricated by solution-based processes. Hematite, tungsten oxide, bismuth vanadate, titanium oxide, and copper oxides are the main oxides focused on, and various strategies have been attempted with respect to these photocatalyst materials. The effects of nanostructuring, heterojunctions, and co-catalyst loading on the surface are discussed. Our review introduces notable solution-based processes for water splitting photoelectrodes and gives an outlook on eco-friendly and cost-effective approaches to solar fuel generation and innovative artificial photosynthesis technologies.

MOCVD of $Bi_2Te_3$-based thermoelectric materials and their material characteristics (MOCVD법으로 성장된 열전재료용 $Bi_2Te_3$ 박막의 특성)

  • Kim, Jeong-Hun;Jung, Yong-Chul;Suh, Sang-Hee;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-15
    • /
    • 2005
  • The growth of $Bi_2Te_3$ thin films on (001) GaAs substrates by metal organic chemical vapour deposition (MOCVD) is discussed in this paper. The results of surface morphology, electrical and thermoelectrical properties as a function of growth parameters are given. The surface morphologies of $Bi_2Te_3$ films were strong1y dependent on the deposition temperatures. Surface morphologies varied from step-flow growth mode to island coalescence structures depending on deposition temperature. In-plane carrier concentration and electrical Hall mobility were highly dependent on precursor's ratio of Te/Bi and deposition temperature. The high Seebeck coefficient (of $-160{\mu}VK^{-1}$) and good surface morphology of our result is promising for $Bi_2Te_3$ based thermoelectric thin film and two dimensional supperlattice device applications.

  • PDF

ITO Nanowires-embedded Transparent Metal-oxide Semiconductor Photoelectric Devices (ITO 나노와이어 기반의 투명 산화물 반도체 광전소자)

  • Kim, Hyunki;Kim, Hong-Sik;Patel, Malkeshkumar;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.808-812
    • /
    • 2015
  • Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction of p-type NiO and n-type ZnO. A functional template of ITO nanowires (NWs) was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.

MOCVD of GaN Films on Si Substrates Using a New Single Precursor

  • Song, Seon-Mi;Lee, Sun-Sook;Yu, Seung-Ho;Chung, Taek-Mo;Kim, Chang-Gyoun;Lee, Soon-Bo;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.953-956
    • /
    • 2003
  • Hexagonal GaN (h-GaN) films have been grown on Si(111) substrates by metal organic chemical vapor deposition using the azidodiethylgallium methylamine adduct, Et₂Ga(N₃)·NH₂Me, as a new single precursor. Deposition was carried out in the substrate temperature range 385-650 °C. The GaN films obtained were stoichiometric and did not contain any appreciable amounts of carbon impurities. It was also found that the GaN films deposited on Si(111) had the [0001] preferred orientation. The photoluminescence spectrum of a GaN film showed a band edge emission peak characteristic of h-GaN at 378 nm.