Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.2.463

Electrochemical Synthesis of Octahedral Nanostructured PbF2  

Lee, Joon-Ho (Department of Textile Engineering, Inha University)
Choi, Jin-Sub (Department of Chemical Engineering, Inha University)
Publication Information
Abstract
In this work, we investigate anodization of Pb in ethylene glycol containing small amount of $NH_4F$, demonstrating that ${\beta}-PbF_2$ particles with octahedral morphology can be prepared by adjusting the applied potential and anodizing time. FE-SEM images and XRD measurements of anodic nanostructures as a function of anodizing time clearly show that PbO is first formed on Pb. Subsequently, a local dissolution of PbO leads to formation of skeleton structure of PbO, releasing $Pb^{2+}$ ions in the electrolyte. The lead ions can be precipitated on the walls or intersection of the skeleton walls when the concentration of lead ions is saturated. The method described in this article shows the feasibility of formation of metal fluoride crystal by anodization of metal in a fluoride containing solution.
Keywords
Anodization; Pb foil; Lead oxide; Octahedral structure; Superionic;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Veluchamy, P.; Sharon, M.; Minoura, H.; Ichihashi, Y.; Basavaswaran, K. J. Electroanal. Chem. 1993, 344, 73.   DOI   ScienceOn
2 Veluchamy, P.; Minoura, H. Appl. Phys. Lett. 1993, 65, 2431.
3 EL-Naggar, M. M. J. Power. Source 2004, 126, 207.   DOI   ScienceOn
4 Cao, J. ; Zhao, H.; Cao, F.; Zhang, J. Electrochim. Acta 2007, 52, 7870.   DOI   ScienceOn
5 Yurkinskii, V. P.; Sokolova, N. V.; Popov, V. A. Russian J. Appl. Chem. 2001, 74, 427.   DOI
6 Samara, G. A. J. Phys. Chem. Solids 1979, 40, 509.   DOI   ScienceOn
7 Zhu, G.; Liu, P.; Hojamberdiev, M.; Zhou, J.-p.; Huang, X. J. Mater. Sci. 2010, 45, 1846.   DOI
8 Wang, F.; Grey, C. P. J. Am. Chem. Soc. 1995, 117, 6637.   DOI   ScienceOn
9 Alov, D. L.; Rybchenko, S. I. J. Phys. Condens. Matter. 1995, 7, 1475.   DOI   ScienceOn
10 Stubicar, N.; Markovic, B.; Tonejc, A.; Stubičar, M. J. Cryst. Growth 1993, 130, 300.   DOI   ScienceOn
11 Thangadurai, P.; Ramasamy, S.; Kesavamoorthy, R. J. Phys. Condens. Matter 2005, 17, 863.   DOI   ScienceOn
12 Xu, K.; Mao, C.; Geng, J.; Zhu, J. J. Nanotechnology 2007, 18, 315604.   DOI   ScienceOn
13 Xu, K. Mater. Lett. 2008, 62, 4322.   DOI   ScienceOn
14 Choi, J.; Wehrspohn, R. B.; Lee, J.; Gosele, U. Electrochim. Acta 2004, 49, 2645.   DOI   ScienceOn
15 Macak, J. M.; Tsuchiya, H.; Schmuki, P. Angew. Chem. Int. Ed. 2005, 44, 2100.   DOI   ScienceOn
16 Tsuchiya, H.; Schmuki, P. Electrochem. Commun. 2004, 6, 1131.   DOI   ScienceOn
17 Pavlov, D.; Diner, Z. J. Electrochem. Soc. 1980, 127, 855.   DOI
18 Choi, J.; Lim, J. H.; Lee, S. C.; Chang, J. H.; Kim, K. J.; Cho, M. A. Electrochim. Acta 2006, 51, 5502.   DOI   ScienceOn
19 Kim, S. J.; Lee, J.; Choi, J. Electrochim. Acta 2008, 53, 7941.   DOI   ScienceOn