• Title/Summary/Keyword: nanostructured material

Search Result 96, Processing Time 0.048 seconds

A Study on the Deposition of Permalloy Nanostructured Thin Film Utilizing Supersonic Deposition of Nanoparticles Formed by Laser Ablation of Microparticles (마이크로입자의 레이저 Ablation으로 형성된 나노입자의 수펴소닉 적층법을 이용한 퍼멀로이 나노구조박막 적층에 관한 연구)

  • Yun, Eui-Jung;Jung, Myunghee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.478-483
    • /
    • 2005
  • In this paper, we synthesized 10 to 20 nm diameter NiFe nanoparticles and nanoparticle films utilizing supersonic jet deposition of nanoparticle aerosols generated by laser ablation of $30\;to\;45{\mu}m$ diameter permalloy $(Ni_{81}Fe_{19} \;at\;{\%})$ microparticles. The component and composition of the nanoparticles were characterized by an energy dispersive X-ray spectroscopy. The morphology of the nanoparticles and nanoparticle films was analyzed by a high-resolution transmission electron microscopy and a scanning electron microscopy, respectively. The experimental results showed that the nanoparticles and nanoparticle films have remarkable properties with an excellent preservation of the composition of feedstock permalloy microparticles. The purpose of the present work is to present details on the composition and nanostructural characterizations for NiFe nanoparticles and nanoparticle films prepared by laser ablation of microparticles (LAM).

Electrochemical Characteristics of Aqueous Polymeric Gel Electrolyte for Supercapacitor (수퍼커패시터용 수용성 고분자 젤 전해질의 전기화학적 특성)

  • ;Masashi ISHIKAWA;Masayuki MORITA
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.93-96
    • /
    • 2001
  • We have reported to make nanostructured cobalt oxide electrode that have large capacitance over than 400F/g (specific capacitance) and good cycleability. But, It had serious demerits of low voltage range under 0.5V and low power density. Therefore, we need to increase voltage range of cobalt oxide electrode. we report here on the electrochemical properties of sol-gel-derived nanoparticulate cobalt xerogel in 1M KOH solution and aqueous polymeric gel electrolyte. In solution electrolyte, cobalt oxide electrode had over than 250F/g capacitance consisted of EDLC and pseudocapacitance. In gel electrolyte, cobalt oxide electrode had around 100F/g capacitance. This capacitance was only surface EDLC. In solution electrolyte, potassium ion as working ion reacted with both of layers easily. However, In gel electrolyte, reacted with only surface-active layer. Its very hard to reach resistive layer. So, e have studied on pretretmetn of electrode to contain working ions easily. We'll report more details.

  • PDF

Thermal, Electrical Characteristics according to Contents Variation of Epoxy/Organoclay Nanocomposites for High Voltage Insulation (고압절연용 Epoxy/Organoclay Nanocomposites의 열적, 전기적 특성에 관한 연구)

  • Park, Jae-Jun;Ahn, Ju-No
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.226-227
    • /
    • 2007
  • Nanostructured materials are attracting increased interest and application. Exciting perspectives may be offered by electrical insulation. Epoxy/Organoclay nanocomposites may find new and upgraded applications in the electrical industry, replacing conventional insulation to provide improved performances in electric power apparatus, e.g, high voltage motor/generator stator winding insulation, dry mold transformer, etc. This paper shows that electrical and thermal properties of epoxy/organoclay nanocomposites insulating materials for dsc, dielectric constant, I-V characteristics, breakdown volatge, can improve significantly with respect to the basic, virgin materials.

  • PDF

Synthesis of Copper Nanoparticle by Multiple Thermal Decomposition and Electroless Ag Plating (복합적 열분해법을 이용한 구리 나노분말의 합성 및 무전해 은도금에 관한 연구)

  • PARK, JEONGSOO;KIM, SANGHO;HAN, JEONGSEB
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • To synthesize copper nanoparticle a thermal decomposition was adopted. And to solve the problem of surface oxidation of the synthesized copper powder an electroless Ag plating method was used. The size and shape of synthesized Cu nanoparticle were affected by the size of copper oxalate used as a precursor, reaction solvent, reaction temperature and amount of reducing agent. Especially reaction solvent is dominant factor to control shape of Cu nano-particle which can have the shapes of sphere, polygon and rod. In case of glycerol, it produced spherical shape of about 500 nm in size. Poly ethylene produced uniform polygonal shape in about 700 nm and ethylene glycol produced both of polygon and rod having size range between 500 and 1500 nm. The silver coated copper powder showed a high electrical conductivity.

MOCVD of $Bi_2Te_3$-based thermoelectric materials and their material characteristics (MOCVD법으로 성장된 열전재료용 $Bi_2Te_3$ 박막의 특성)

  • Kim, Jeong-Hun;Jung, Yong-Chul;Suh, Sang-Hee;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-15
    • /
    • 2005
  • The growth of $Bi_2Te_3$ thin films on (001) GaAs substrates by metal organic chemical vapour deposition (MOCVD) is discussed in this paper. The results of surface morphology, electrical and thermoelectrical properties as a function of growth parameters are given. The surface morphologies of $Bi_2Te_3$ films were strong1y dependent on the deposition temperatures. Surface morphologies varied from step-flow growth mode to island coalescence structures depending on deposition temperature. In-plane carrier concentration and electrical Hall mobility were highly dependent on precursor's ratio of Te/Bi and deposition temperature. The high Seebeck coefficient (of $-160{\mu}VK^{-1}$) and good surface morphology of our result is promising for $Bi_2Te_3$ based thermoelectric thin film and two dimensional supperlattice device applications.

  • PDF

Study on the Optimization of Reduction Conditions for Samarium-Cobalt Nanofiber Preparation (사마륨-코발트 자성 섬유 제조를 위한 환원 거동 연구 및 환원-확산 공정의 최적화)

  • Lee, Jimin;Kim, Jongryoul;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.334-339
    • /
    • 2019
  • To meet the current demand in the fields of permanent magnets for achieving a high energy density, it is imperative to prepare nano-to-microscale rare-earth-based magnets with well-defined microstructures, controlled homogeneity, and magnetic characteristics via a bottom-up approach. Here, on the basis of a microstructural study and qualitative magnetic measurements, optimized reduction conditions for the preparation of nanostructured Sm-Co magnets are proposed, and the elucidation of the reduction-diffusion behavior in the binary phase system is clearly manifested. In addition, we have investigated the microstructural, crystallographic, and magnetic properties of the Sm-Co magnets prepared under different reduction conditions, that is, $H_2$ gas, calcium, and calcium hydride. This work provides a potential approach to prepare high-quality Sm-Co-based nanofibers, and moreover, it can be extended to the experimental design of other magnetic alloys.

Properties and Fabrication of Nanostructured 2/3 Cr-ZrO2 Composite for Artificial Joint by Rapid Sinerting (급속 소결에 의한 인공관절용 나노구조 2/3 Cr-ZrO2 복합재료 제조 및 특성)

  • Kang, Hyun-Su;Kang, Bo-Ram;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.495-501
    • /
    • 2014
  • Despite having many attractive properties, $ZrO_2$ ceramic has a low fracture toughness which limits its wide application. One of the most obvious tactics to improve its mechanical properties has been to add a reinforcing agent to formulate a nanostructured composite material. Nanopowders of $ZrO_2$ and Cr were synthesized from $CrO_3$ and Zr powder by high energy ball milling for 10 h. Dense nanocrystalline $2/3Cr-ZrO_2$ composite was consolidated by a high-frequency induction heated sintering method within 5 min at $600^{\circ}C$ from mechanically synthesized powder. The method was found to enable not only rapid densification but also the inhibition of grain growth, preserving the nano-scale microstructure. Highly dense $2/3Cr-ZrO_2$ composite with relative density of up to 99.5% was produced under simultaneous application of a 1 GPa pressure and the induced current. The hardness and fracture toughness of the composite were 534 kg/mm2 and $7MPa{\cdot}m1/2$, respectively. The composite was determined to have good biocompatibility.

Photocatalytic Activity of Hierarchical N doped TiO2 Nanostructures

  • Naik, Brundabana;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.669-669
    • /
    • 2013
  • Hierarchical N doped TiO2 nanostructured catalyst with micro, meso and macro porosity have been synthesized by a facile self-formation route using ammonia and titanium isopropoxide precursor. The samples were calcined in different calcination temperature ranging from $300^{\circ}C$ to $800^{\circ}C$ at slow heating rate ($5^{\circ}C$/min) and designated as NHPT-300 to NHPT-800. $TiO_2$ nanostructured catalyst have been characterized by physico-chemical and spectroscopy methods to explore the structural, electronic and optical properties. UV-Vis diffuse reflectance spectra confirmed the red shift and band gap narrowing due to the doping of N species in TiO2 nanoporous catalyst. Hierarchical macro porosity with fibrous channel patterning was observed (confirmed from FESEM) and well preserved even after calcination at $800^{\circ}C$, indicating the thermal stability. BET results showed that micro and mesoporosity was lost after $500^{\circ}C$ calcination. The photocatalytic activity has been evaluated for methanol oxidation to formaldehyde in visible light. The enhanced photocatalytic activity is attributed to combined synergetic effect of N doping for visible light absorption, micro and mesoporosity for increase of effective surface area and light harvestation, and hierarchical macroporous fibrous structure for multiple reflection and effective charge transfer.

  • PDF

Surface Modification Silica Nanoparticles by Aerosol Self Assembly (에어로졸 자기조립에 의한 실리카 나노분말의 표면개질)

  • Kil, Dae-Sup;Jang, Hee-Dong;Chang, Han-Kwon;Cho, Kuk;Kim, Sun-Kyung;Oh, Kyoung-Joon;Choi, Jin-Hoon
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.78-81
    • /
    • 2010
  • Surface modification of silica nanoparticles was investigated using an aerosol self assembly. Stearic acid was used as surface treating agent. A two-fluid jet nozzle was employed to generate an aerosol of the colloidal suspension, which contained 20 nm of silica nanoparticles, surface modifier, and ethyl alcohol. Powder properties such as morphology, specific surface area and pore size distribution were analyzed by SEM, BET and BJH methods, respectively. Surface properties of the silica power were analyzed by FT-IR. The OH bond of the $SiO_2$ surface was converted to a C-H bond. It was revealed that the hydrophilic surface changed to a hydrophobic one due to the aerosol self assembly. Morphology of the surface treated powder was nanostructured with lots of pores having an average diameter of around $2\;{\mu}m$. Depending on the stearic acid concentration (0.25 to 1.0 wt%), the pore size distribution of the particles and the degree of hydrophobicity ranged from 1.5 nm to 180 nm and 29.6% to 50.2%, respectively.

Growth of Two-Dimensional Nanostrcutured VO2 on Graphene Nanosheets (그래핀 나노 시트 위에 2차원 나노구조를 갖는 VO2의 성장)

  • Oh, Su-Ar;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.502-507
    • /
    • 2016
  • Vanadium dioxide, $VO_2$, is a thermochromic material that exhibits a reversible metal-insulator phase transition at $68^{\circ}C$, which accompanies rapid changes in the optical and electronic properties. To decrease the transition temperature around room temperature, a number of studies have been performed. The phase transition temperature of 1D nanowire $VO_2$ with a 100 nm diameter was reported to be approximately $29^{\circ}C$. In this study, 1D or 2D nanostructured $VO_2$ was grown using the vapor transport method. Vanadium dioxide has a different morphology with the same growth conditions for different substrates. The 1D nanowires $VO_2$ were grown on a Si substrate ($Si{\setminus}SiO_2$(300 nm), whereas the 2D & 3D nanostructured $VO_2$ were grown on an exfoliated graphene nanosheet. The crystallographic properties of the 1D or 2D & 3D nanostructured $VO_2$, which were grown by thermal CVD, and exfoliated-transferred graphene nanosheets on a Si wafer which was used as substrate for the vanadium oxide nanostructures, were analyzed by Raman spectroscopy. The as-grown vanadium oxide nanostructures have a $VO_2$ phase, which are confirmed by Raman spectroscopy.