Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.9.495

Properties and Fabrication of Nanostructured 2/3 Cr-ZrO2 Composite for Artificial Joint by Rapid Sinerting  

Kang, Hyun-Su (Division of Advanced Materials Engineering and the Research Center of Hydrogen and Fuel Cell, Engineering College, Chonbuk National University)
Kang, Bo-Ram (Division of Advanced Materials Engineering and the Research Center of Hydrogen and Fuel Cell, Engineering College, Chonbuk National University)
Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Hydrogen and Fuel Cell, Engineering College, Chonbuk National University)
Publication Information
Korean Journal of Materials Research / v.24, no.9, 2014 , pp. 495-501 More about this Journal
Abstract
Despite having many attractive properties, $ZrO_2$ ceramic has a low fracture toughness which limits its wide application. One of the most obvious tactics to improve its mechanical properties has been to add a reinforcing agent to formulate a nanostructured composite material. Nanopowders of $ZrO_2$ and Cr were synthesized from $CrO_3$ and Zr powder by high energy ball milling for 10 h. Dense nanocrystalline $2/3Cr-ZrO_2$ composite was consolidated by a high-frequency induction heated sintering method within 5 min at $600^{\circ}C$ from mechanically synthesized powder. The method was found to enable not only rapid densification but also the inhibition of grain growth, preserving the nano-scale microstructure. Highly dense $2/3Cr-ZrO_2$ composite with relative density of up to 99.5% was produced under simultaneous application of a 1 GPa pressure and the induced current. The hardness and fracture toughness of the composite were 534 kg/mm2 and $7MPa{\cdot}m1/2$, respectively. The composite was determined to have good biocompatibility.
Keywords
composite; nanomaterial; synthesis; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. N. Rahaman and A. Yao, J. Am. Ceram. Soc., 90(7), 1965 (2007).   DOI   ScienceOn
2 A. I. Y. Tok, L. H. Luo and F. Y. C. Boey, Mater. Sci. Eng., A. 383, 229 (2004).   DOI   ScienceOn
3 I. J. Shon, G. W. Lee, J. M. Doh and J. K. Yoon, Electron. Mater. Lett., 9, 219 (2013).   DOI   ScienceOn
4 W. Kim, C. Y. Suh, K. M. Roh, J. W. Lim, H. B. Shim, H. K. Park and I. J. Shon, Korean J. Met. Mater., 50, 861 (2012).
5 N. R. Park, K. I. Na, H. J. Kwon, J. W. Lim and I. J. Shon, Korean J. Met. Mater., 51, 753 (2013).   DOI   ScienceOn
6 N. R. Kim, S. W. Cho, W. Kim and I. J. Shon, Korean J. Met. Mater., 50, 34 (2012).   DOI
7 J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade and P. Asoka- Kumar, Appl. Phys. Lett., 85, 573 (2004).   DOI   ScienceOn
8 C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
9 O. Knake, O. Kubaschewski and K. Hesselmann, Thermochemical Properties of Inorganic Substances, Springer- Verlag, New York (1991).
10 J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir, Intermetallics, 12, 589 (2004).   DOI   ScienceOn
11 J. E. Garay, U. Anselmi-Tamburini and Z. A. Munir, Acta Mater., 51, 4487 (2003).   DOI   ScienceOn
12 R. Raj, M. Cologna and J. S. C. Francis, J. Am. Ceram. Soc., 94(7) 1941 (2011).   DOI
13 R. L. Coble, J. Appl. Phys., 41, 4798 (1970).   DOI
14 I. J. Shon, D. H. Rhon and H. C. Kim, Met. Mater., 6, 533 (2000).   DOI
15 G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Am. Ceram. Soc., 64, 533 (1981).   DOI
16 S. G. Huang, J. Eur. Ceram. Soc., 27, 3269 (2007).   DOI   ScienceOn
17 I. J. Shon, S. L. Du, J. M. Doh and J. K. Yoon, Met. Mater. Int., 19, 1041 (2013).   DOI   ScienceOn
18 Z. Shen, M. Johnsson, Z. Zhao and M. Nygren, J. Am. Ceram. Soc., 85, 1921 (2002).   DOI   ScienceOn
19 S. M. Kwak, H. K. Park and I. J. Shon, Korean J. Met. Mater., 51, 314 (2013).