• Title/Summary/Keyword: nanostructured cells

Search Result 45, Processing Time 0.019 seconds

Fabrication of TiO2 Nanowires Using Vapor-Liquid-Solid Process for the Osseointegration (골융합을 위한 Vapor-Liquid-Solid 법을 이용한 TiO2 나노와이어의 합성)

  • Yun, Young-Sik;Kang, Eun-Hye;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.204-210
    • /
    • 2013
  • In order to improve osseointegration for biomedical implants, it is crucial to understand the interactions between nanostructured surfaces and cells. In this study, $TiO_2$ nanowires were prepared via Vapor-Liquid-Solid (VLS) process with Sn as a metal catalyst in the tube furnace. Nanowires were grown with $N_2$ heat treatment with their size controlled by the agglomeration of Sn layers in various thicknesses. MC3T3-E1 (pre-osteoblast) were cultured on the $TiO_2$ nanowires for a week. Preliminary results of the cell culture showed that the cells adhere well on the $TiO_2$ nanowires.

Enhanced Bone-Regenerative Performance of Porous Hybrid Scaffolds by Surface Immobilization of Nano-Hydroxyapatite

  • Lee, Sang-Cheon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.12.1-12.1
    • /
    • 2009
  • Nano-hydroxyapatite (N-HAp)has shown the pivotal role in producing bone-regenerative materials since it has similarity to natural bone minerals in terms of size, morphology, and the composition. Currently, the combination of biopolymers and N-HAp is recognizedas an attractive approach in generating hybrid scaffolds for bone tissueengineering. Surface engineering is an important issue since it determines whether cells can effectively adhere and proliferate on porous scaffolds. We aim to develop a synthetic approach to porous 3D scaffolds by immobilizing N-HAp on pore surfaces. The discrete nano-level anchoring of N-HAp on the scaffold pore surface is achieved using surface-repellent stable colloidal N-HAp with surface phosphate functionality. This rational surface engineering enables surface-anchored N-HAp to express its overall intrinsic bioactivity,since N-HAp is not phase-mixed with the polymers. The porous polymer scaffolds with surface-immobilized N-HAp provide more favorable environments thanconventional bulk phase-mixed polymer/N-HAp scaffolds in terms of cellular interaction and growth. In vitro biological evaluation using alkalinephosphatase activity assay supports that immobilized N-HAp on pore surfaces of polymer scaffolds contributed to the more enhanced in vitro osteogenicpotential. Besides, the scaffolds with surface-exposed N-HAp provide favorable environments for enhanced in vivo bone tissue growth, estimated by characteristic biomarkers of bone formation such as collagen. The results suggest that newly developed hybrid scaffolds with surface-immobilized N-HApmay serve as a useful 3D substrate with pore surfaces featuring excellent bonetissue-regenerative properties. Acknowledgement. This research was supported by a grant (code #: 2009K000430) from 'Center for Nanostructured Materials Technology' under '21st Century Frontier R&D Programs' of the Ministry of Education, Science and Technology, Korea.

  • PDF

Interfacing Silicate Layer Between MoO3 Ribbon and Pt Metaldots Boosts Methanol Oxidation Reaction

  • Lee, Dohun;Jeong, Juwon;Manivannan, Shanmugam;Kim, Kyuwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.273-281
    • /
    • 2020
  • Constructing and making highly active and stable nanostructured Pt-based catalysts with ultralow Pt loading are still electrifying for electrochemical applications such as water electrolysis and fuel cells. In this study, MoO3 ribbons (RBs) of few micrometer in length is successfully synthesized via hydrothermal synthesis. Subsequently, 3-dimentional (3D)-silicate layer for about 10 to 15 nm is introduced via chemical deposition onto the pre-formed MoO3 RBs; to setup the platform for Pt metaldots (MDs) deposition. In comparison with the bare MoO3 RBs, the MoO3-Si has served as a efficient solid-support for stabilizing and accommodating the uniform deposition of sub-2 nm Pt MDs. Such a structural design would effectively assist in improving the electronic conductivity of a fabricated MoO3-Si-Pt catalyst towards MOR; the interfaced, porous and 3D silicate layer has assisted in an efficient mass transport and quenching the poisonous COads species leading to a significant electrocatalytic performance for MOR in alkaline medium. Uniformly decorated, sub-2 nm sized Pt MDs has synergistically oxidized the MeOH in association with the MoO3-Si solid-support hence, synergistic catalytic activity has been achieved. Present facile approach can be extended for fabricating variety of highly efficient Metal Oxide-Metal Nanocomposite for energy harvesting applications.

Hydrothermal Synthesis of $TiO_2$ Nanowire Array for Osteoblast Adhesion

  • Yun, Young-Sik;Kang, Eun-Hye;Hong, Min-Eui;Yun, In-Sik;Kim, Yong-Oock;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.275-275
    • /
    • 2013
  • Osteoblast is one of cells related with osseointegration and many research have conducted the adhesion of osteoblast onto the surface of implant. In the osseointegration, biocompatibility of the implant and cell adhesion to the surface are important factors. The researches related to cell adhesion have a direction from micro-scaled surface roughness to nano-scaled surface roughness with advancing nanotechnology. A cell reacts and sense to stimuli from extracellular matrix (ECM) and topography of the ECM [1]. Thus, for better osseointegration, we should provide an environment similar to ECM. In this study, we synthesize TiO2 nanowires using hydrothermal reaction because TiO2 provides inertness to titanium on its surface and enables it used as an implant material for the orthopedic treatment such as fixation of the bone fracture [2]. Ti substrate is immersed into NaOH aqueous solution. The solution are heated at $140{\sim}200^{\circ}C$ for various time (10~720 minutes). After heat treatment, we take out the sample and immerse it into HCl aqueous solution for 1 hour. The acid treated sample is heated again at $500^{\circ}C$ for 3 hours [3]. Then, we culture osteoblast on the TiO2 nanowires. For investigating cell adhesion onto nanostructured surface, we conduct several tests such as MTT assay, ALP (Alkaline phosphatase) activity assay, measuring calcium expression, and so on. These preliminary results of the cell culture on the nanowires are foundation for investigating cell-material interaction especially with nanostructure interaction.

  • PDF

International Conference on Electroceramics 2005 (2005년도 국제 전자세라믹 학술회의)

  • 한국세라믹학회
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 2005.06a
    • /
    • pp.1-112
    • /
    • 2005
  • This report is results of a research on recent R&D trends in electroceramics, mainly focusing on the papers submitted to the organizing committee of the International Conference on Electroceramics 2005 (ICE-2005) which was held at Seoul on 12-15 June 2005. About 380 electroceramics researchers attended at the ICE-2005 from 17 countries including Korea, presenting and discussing their recent results. Therefore, we can easily understand the recent research trends in the field of electroceramics by analyses of the subject and contents of the submitted papers. In addition to the analyses of the papers submitted to the ICE-2005, we also collected some informations about domestic and international research trends to help readers understand this report easily. We analysed the R&D trends on the basis of four main categories, that is, informatics electroceramics, energy and environment ceramics, processing and characterization of electroceramics, and emerging fields of electroceramics. Each main category has several sub-categories again. The informatics ceramics category includes integrated dielectrics and ferroelectrics, oxide and nitride semiconductors, photonic and optoelectronic devices, multilayer electronic ceramics and devices, microwave dielectrics and high frequency devices, and piezoelectric and MEMS applications. The energy and environment ceramics category has four sub-categories, that is, rechargable battery, hydrogen storage, fuel cells, and advanced energy conversion concepts. In the processing and characterization category, there exist domain, strain, and epitaxial dynamics and engineering sub-category, innovative processing and synthesis sub-category, nanostructured materials and nanotechnology sub- category, single crystal growth and characterization sub-category, theory and modeling sub-category. Nanocrystalline electroceramics, electroceramics for smart sensors, and bioceramics sub-categories are included to the emerging fields category. We hope that this report give an opportunity to understand the international research trend, not only to Korean ceramics researchers but also to science and technology policy researchers.

  • PDF