Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.4.204

Fabrication of TiO2 Nanowires Using Vapor-Liquid-Solid Process for the Osseointegration  

Yun, Young-Sik (School of Integrated Technology, Yonsei University)
Kang, Eun-Hye (Department of Plastic & Reconstructive Surgery, College of Medicine, Yonsei University)
Yun, In-Sik (Department of Plastic & Reconstructive Surgery, College of Medicine, Yonsei University)
Kim, Yong-Oock (Department of Plastic & Reconstructive Surgery, College of Medicine, Yonsei University)
Yeo, Jong-Souk (School of Integrated Technology, Yonsei University)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.4, 2013 , pp. 204-210 More about this Journal
Abstract
In order to improve osseointegration for biomedical implants, it is crucial to understand the interactions between nanostructured surfaces and cells. In this study, $TiO_2$ nanowires were prepared via Vapor-Liquid-Solid (VLS) process with Sn as a metal catalyst in the tube furnace. Nanowires were grown with $N_2$ heat treatment with their size controlled by the agglomeration of Sn layers in various thicknesses. MC3T3-E1 (pre-osteoblast) were cultured on the $TiO_2$ nanowires for a week. Preliminary results of the cell culture showed that the cells adhere well on the $TiO_2$ nanowires.
Keywords
$TiO_2$ nanowire; Vapor-Liquid-Solid; Sn agglomeration; Pre-osteoblast; Osseointegration;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. C. Dutta and A. K. Dutta, Biotechnol. Adv. 27, 334 (2009).   DOI   ScienceOn
2 E. Engel, A. Michiardi, M. Navarro, D. Lacroix, and J. A. Planell, Trends Biotechnol. 26, 39 (2007).
3 I. Wheeldon, A. Farhadi, A. G. Bick, E. Jabbari, and A. Khademhosseini, Nanotechnology 22, 212001 (2011).   DOI   ScienceOn
4 C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Science 276, 1425 (1997).   DOI   ScienceOn
5 R. Langer, J. T. Borenstein, and C. J. Bettinger, Angew. Chem. Int. Ed. 48, 5406 (2009).   DOI   ScienceOn
6 B. Geiger, J. P. Spatz, and A. D. Bershadsky, Nat. Rev. Mol. Cell Bio. 10, 21 (2009).   DOI   ScienceOn
7 A. P. Tomsia, M. E. Launey, J. S. Lee, M. H. Mankani, U. G. K. Wegst, and E. Saiz, J. Oral. Max. Impl. 26, 25 (2011).
8 R. M. Streilcher, M. Schmidt, and S. Fiorito, Nanomedicine 2, 861 (2007).   DOI   ScienceOn
9 B. E. Rapuano, D. E. MacDonald, Colloids and Surfaces B: Biointerfaces 82, 95 (2011).   DOI   ScienceOn
10 R. Zhang, Y. An, C. A. Toth, R. A. Draughn, N. M. Dimaano, and M. V. Hawkins, J. Biomater. Res. B. 71B, 408 (2004).   DOI
11 Y. Wu, J. P. Zitelli, K. S. TenHuisen, X. Yu, and M. R. Libera, Biomaterials 32, 951 (2011).   DOI   ScienceOn
12 A. W. Tan, B. Pingguan-Murphy, R. Ahmad, and S. A. Akbar, Ceramics International 38, 4421 (2012).   DOI   ScienceOn
13 R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).   DOI
14 J. C. Lee, K. S. Park, T. G. Kim, H. J. Choi, and Y. M. Sung, Nanotechnology 17, 4317 (2006).   DOI   ScienceOn
15 S. S. Amin, A. W. Nicholls, and T. T. Xu, Nanotechnology 18, 445609 (2007).   DOI   ScienceOn
16 Y. S. Park and J. S. Lee, Bull. Korean Chem. Soc. 32, 3571 (2011)   DOI   ScienceOn
17 J. Y. Ha, B. D. Sosnowchik, L. Lin, D. H. Kang, and A. V. Davydov, Appl. Phys. Express 4, 065002 (2011).   DOI
18 H. Lee, S. Dregia, S. Akbar, and M. Alhoshan, Journal of Nanomaterials 2010, 503186 (2010).
19 H. W. Shin, J. C. Shin, and J. W. Choe, J. Korean Vac. Soc. 22, 105 (2013).   DOI   ScienceOn
20 H. Lee, Titanium Oxide Nanowire Growth by Oxidation Under a Limited Supply of Oxygen: Processing and Characterization, (Dissertation, 2009), pp. 201-224.