• Title/Summary/Keyword: nanosensor

Search Result 126, Processing Time 0.022 seconds

Inhibition of the Replication of Hepatitis C Virus Replicon with Nuclease-Resistant RNA Aptamers

  • Shin, Kyung-Sook;Lim, Jong-Hoon;Kim, Jung-Hye;Myung, Hee-Joon;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1634-1639
    • /
    • 2006
  • Hepatitis C virus (HCV)-encoded nonstructural protein 5B (NS5B) possesses RNA-dependent RNA polymerase activity, which is considered essential for viral proliferation. Thus, HCV NS5B is a good therapeutic target protein for the development of anti-HCV agents. In this study, we isolated two different kinds of nuclease-resistant RNA aptamers with 2'-fluoro pyrimidines against the HCV NS5B from a combinatorial RNA library with 40 nucleotide random sequences, using SELEX technology. The isolated RNA aptamers were observed to specifically and avidly bind the HCV NS5B with an apparent $K_d$ of 5 nM and 18 nM, respectively, in contrast with the original RNA library that hardly bound the target protein. Moreover, these aptamers could partially inhibit RNA synthesis of the HCV subgenomic replicon when transfected into Huh-7 hepatoma cell lines. These results suggest that the RNA aptamers selected in vitro could be useful not only as therapeutic agents of HCV infection but also as a powerful tool for the study of the HCV RNA-dependent RNA polymerase mechanism.

Synthesis and Characterization of Aliphatic Polyether Dendrons Based on Polystyrene Peripheries

  • Song, Jie;Kim, Hyun-Yu;Cho, Byoung-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1771-1776
    • /
    • 2007
  • The synthesis of well-defined dendrons based on aliphatic polyether dendritic cores and glassy polystyrene peripheries is described. The synthetic route involves a combination of living anionic polymerization and a stepwise convergent method consisting of iterative Williamson etherification and hydroboration/oxidation reactions. On the basis of molecular weight, as characterized by gel permeation chromatography (GPC), the first generation dendron (Generation-1) shows a random coil conformation like a linear polystyrene, while higher generations (Generation-2 and 3) reveal globular forms in solution.

Fluid-conveying piezoelectric nanosensor: Nonclassical effects on vibration-stability analysis

  • Kachapi, Sayyid H. Hashemi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.619-629
    • /
    • 2020
  • In current study, surface/interface effects for pull-in voltage and viscous fluid velocity effects on dimensionless natural frequency (DNF) of fluid-conveying piezoelectric nanosensor (FCPENS) subjected to direct electrostatic voltage DC with nonlinear excitation, harmonic force and also viscoelastic foundation (visco-pasternak medium and structural damping) are investigated using Gurtin-Murdoch surface/interface (GMSIT) theory. For this analysis, Hamilton's principles, the assumed mode method combined with Lagrange-Euler's are used for the governing equations and boundary conditions. The effects of surface/interface parameters of FCPENS such as Lame's constants (λI,S, μI,S), residual stress (τ0I,S), piezoelectric constants (e31psk,e32psk) and mass density (ρI,S) are considered for analysis of dimensionless natural frequency respect to viscous fluid velocity u̅f and pull-in voltage V̅DC.

Pathological Effect of Melatonin on Vascular Endothelial Cell Detachment (혈관내피세포 탈착에 미치는 melatonin의 병리학적 영향)

  • Seo, Jeong-Hwa;Kim, Sung-Hyen;Ahn, Sun-Young;Jeong, Eun-Sil;Cho, Jin-Gu;Park, Heon-Yong
    • Journal of Life Science
    • /
    • v.20 no.6
    • /
    • pp.914-921
    • /
    • 2010
  • In this study, we carried out a series of experiments to know whether melatonin, an anti-oxidative and immunosuppressive agent, played an important role in endothelial cells. It was revealed that melatonin had little or no effect on endothelial proliferation, cell death or migration. Additionally, melatonin had no effect on adhesion of THP-1 leukocytes to bovine aortic endothelial cells (BAECs) and THP-1 homotypic cell aggregation. In contrast, it was shown that melatonin diminished the basal level of nitric oxide by PP2A-mediated dephosphorylation of endothelial nitric oxide synthase (eNOS), leading to enhanced detachment of BAEC from the extracellular matrix. Collectively, melatonin in high doses decreases the NO production via regulations of PP2A and eNOS activities, inducing detachment of endothelial cells, a possible initial step for thrombosis.

Effect of Alliin on Vascular Functions (혈관 생리 활성에 미치는 alliin의 효능)

  • Seo, Jeong-Hwa;Kim, Jeong-Min;Ahn, Sun-Young;Cho, Jin-Gu;Kim, Jong-Min;Park, Heon-Yong
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.976-982
    • /
    • 2009
  • Little is known about the cardiovascular roles of alliin, a functional component in garlic that has been used as food material. Thus, we examined a broad range of cardiovascular activities of alliin in this study. From our in vitro experiments, alliin was determined to act as a stimulant to induce endothelial cell proliferation and endothelial cell migration. Since endothelial cell proliferation and migration are highly associated with angiogenesis and wound healing, alliin is suggested as a regulator to control angiogenesis and wound healing. In addition, alliin was elucidated to prevent lipopolysaccharide (LPS)-induced adhesion of THP-1 leukocytes to endothelial cells and LPS-induced homotypic THP-1 cell aggregation. These inhibitory effects indicate that alliin is likely to act as an anti-atherosclerotic and anti-thrombotic factor, because leukocytic adhesion to endothelial cells and homotypic leukocyte aggregation are highly associated with atherosclerosis and thrombosis, respectively. Our additional findings show that alliin has no effect on the production of nitric oxide (NO), an important vasoregulator. In conclusion, alliin is suggested as a regulator for controlling various cardiovascular functions.

Novel Function of Lycopene in Vascular Endothelial Cell (Lycopene의 새로운 혈관내피세포 생리활성)

  • Cho, Jin-Gu;Kim, Sung-Hyen;Seo, Jeong-Hwa;Ahn, Sun-Young;Jeong, Eun-Sil;Park, Heon-Yong
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1093-1099
    • /
    • 2010
  • Little is known about the cardiovascular effects of Lycopene, an anti-cancer and anti-oxidative agent. In this study, we executed a series of experiments with vascular endothelial cells to disclose the cardiovascular functions of lycopene. From our in vitro experiments, lycopene was determined to act as a stimulant to induce endothelial cell proliferation and migration. In addition, lycopene was shown to inhibit lipopolysaccharide (LPS)-induced adhesion of THP-1 leukocytes to endothelial cells, as well as activating mitogen activated protein kinase (MAPK) family members, ERK, JNK and p38 MAPK. Both ERK and p38 MAPK were involved in lycopene-induced cell proliferation, while JNK was involved in lycopene-dependent cell migration. Taken together, lycopene activates MAPK family members which regulate cell proliferation and migration. Lycopene differentially blocks LPS-dependent adhesion for THP-1 to endothelial cells, indicating that lycopene is likely to regulate a variety of vascular functions.

Syntheses and Characterizations of Serine and Threonine Capped Water-Dispersible ZnS:Mn Nanocrystals and Comparison Study of Toxicity Effects on the growth of E. coli by the Methionine, Serine, Threonine, and Valine Capped ZnS:Mn Nanocrystals

  • Lim, Eun-Ju;Park, Sang-Hyun;Byun, Jong-Hoe;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1741-1747
    • /
    • 2012
  • Water-dispersible ZnS:Mn nanocrystals were synthesized by capping the surface of the nanocrystals with conventional aminoacids ligands: serine and threonine. The aminoacids capped ZnS:Mn nanocrystal powders were characterized by XRD, HR-TEM, EDXS, ICP-AES and FT-IR spectroscopy. The optical properties were also measured by UV/Vis and solution photoluminescence (PL) spectroscopies in aqueous solvents. The solution PL spectra showed broad emission peaks around 600 nm with PL efficiencies of 9.7% (ZnS:Mn-Ser) and 15.4% (ZnS:Mn-Thr) respectively. The measured particle sizes for the aminoacid capped ZnS:Mn nanocrystals by HR-TEM images were about 3.0-4.0 nm, which were also supported by Debye-Scherrer calculations. In addition, cytotoxic effects of four aminoacids capped ZnS:Mn nanocrsystals over the growth of wild type E. coli were investigated. Although toxicity in the form of growth inhibition was observed with all the aminoacids capped ZnS:Mn nanocrystals at higher dose (1 mg/mL), ZnS:Mn-Met and ZnS:Mn-Thr appeared non-toxic at doses less than 100 ${\mu}g$/mL. Low biological toxicities were seen at doses less than 10 ${\mu}g$/ mL for all nanocrystals.

Bone Nodule Formation of MG63 Cells is Increased by the Interplay of Signaling Pathways Cultured on Vitamin $D_3$-Entrapped Calcium Phosphate Films

  • Choi, Yong-Seok;Hong, Yoon-Jung;Hur, Jung;Kim, Mee-Young;Jung, Jae-Young;Lee, Woo-Kul;Jeong, Sun-Joo
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.363-370
    • /
    • 2009
  • Since vitamin $D_3$ is an important regulator of osteoblastic differentiation, a presently-established vitamin $D_3$-entrapped calcium phosphate film (VCPF) was evaluated for hard tissue engineering. The entrapped vitamin $D_3$ more rapidly induced bone nodule formation. To characterize the cellular events leading to regulations including faster differentiation, signal transduction pathways were investigated in osteoblastic MG63 cells at a molecular level. Major signaling pathways for MG63 cell proliferation including phosphatidylinositol-3-kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase and focal adhesion kinase pathways were markedly down-regulated when cells were cultured on calcium phosphate film (CPF) and VCPF. This agreed with our earlier observations of the immediate delay in proliferation of MG63 cells upon culture on CPF and VCPF. On the other hand, the p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase A (PKA) pathways were significantly up-regulated on both CPF and VCPF. CPF alone could simulate differential behaviors of MG63 cells even in the absence of osteogenic stimulation and entrapment of vitamin $D_3$ within CPF further amplified the signal pathways, resulting in continued promotion of MG63 cell differentiation. Interplay of p38 MAPK and PKA signaling pathways likely is a significant event for the promotion of differentiation and mineralization of MG63 cells.

Syntheses of Biologically Non-Toxic ZnS:Mn Nanocrystals by Surface Capping with O-(2-aminoethyl)polyethylene Glycol and O-(2-carboxyethyl)polyethylene Glycol Molecules

  • Kong, Hoon-Young;Song, Byung-Kwan;Byun, Jonghoe;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1181-1187
    • /
    • 2013
  • Water-dispersible ZnS:Mn nanocrystals were synthesized by capping the surface of the nanocrystal with O-(2-Aminoethyl)polyethylene glycol (PEG-$NH_2$, Mw = 10,000 g/mol) and O-(2-Carboxyethyl)polyethylene glycol (PEG-COOH, Mw = 10,000 g/mol) molecules. The modified PEG capped ZnS:Mn nanocrystal powders were thoroughly characterized by XRD, HR-TEM, EDXS, ICP-AES and FT-IR spectroscopy. The optical properties were also measured by UV/Vis and photoluminescence (PL) spectroscopies. The PL spectra showed broad emission peaks at 600 nm with similar PL efficiencies of 7.68% (ZnS:Mn-PEG-NH2) and 9.18% (ZnS:Mn-PEG-COOH) respectively. The measured average particle sizes for the modified PEG capped ZnS:Mn nanocrystals by HR-TEM images were 5.6 nm (ZnS:Mn-PEG-NH2) and 6.4 nm (ZnS:Mn-PEG-COOH), which were also supported by Debye-Scherrer calculations. In addition, biological toxicity effects of the nanocrystals over the growth of wild type E. coli were investigated. They showed no biological toxicity to E. coli until very high concentration dosage of 1 mg/mL of the both nanocrystal samples.