• Title/Summary/Keyword: nanoscience

Search Result 239, Processing Time 0.027 seconds

Biosurface Organic Chemistry: Interfacial Chemical Reactions for Applications to Nanobiotechnology and Biomedical Sciences

  • Chi, Young-Shik;Lee, Jung-Kyu K.;Lee, Kyung-Bok;Kim, Dong-Jin;Choi, In-Sung S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.361-370
    • /
    • 2005
  • In this review, the field of biosurface organic chemistry is defined and some examples are presented. The aim of biosurface organic chemistry, composed of surface organic chemistry, bioconjugation, and micro- and nanofabrication, is to control the interfaces between biological and non-biological systems at the molecular level. Biosurface organic chemistry has evolved into the stage, where the lateral and vertical control of chemical compositions is achievable with recent developments of nanoscience and nanotechnology. Some new findings in the field are discussed in consideration of their applicability to nanobiotechnology and biomedical sciences.

Growth Characteristics of Amorphous Silicon Oxide Nanowires Synthesized via Annealing of Ni/SiO2/Si Substrates

  • Cho, Kwon-Koo;Ha, Jong-Keun;Kim, Ki-Won;Ryu, Kwang-Sun;Kim, Hye-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4371-4376
    • /
    • 2011
  • In this work, we investigate the growth behavior of silicon oxide nanowires via a solid-liquid-solid process. Silicon oxide nanowires were synthesized at $1000^{\circ}C$ in an Ar and $H_2$ mixed gas. A pre-oxidized silicon wafer and a nickel film are used as the substrate and catalyst, respectively. We propose two distinctive growth modes for the silicon oxide nanowires that both act as a unique solid-liquid-solid growth process. We named the two growth mechanisms "grounded-growth" and "branched-growth" modes to characterize their unique solid-liquid-solid growth behavior. The two growth modes were classified by the generation site of the nanowires. The grounded-growth mode in which the grown nanowires are generated from the substrate and the branchedgrowth mode where the nanowires are grown from the side of the previously grown nanowires or at the metal catalyst drop attached at the tip of the nanowire stem.

Super-Resolution Optical Fluctuation Imaging Using Speckle Illumination

  • Kim, Min-Kwan;Park, Chung-Hyun;Park, YongKeun;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.403.1-403.1
    • /
    • 2014
  • In conventional far-field microscopy, two objects separated closer than approximately half of an emission wavelength cannot be resolved, because of the fundamental limitation known as Abbe's diffraction limit. During the last decade, several super-resolution methods have been developed to overcome the diffraction limit in optical imaging. Among them, super-resolution optical fluctuation imaging (SOFI) developed by Dertinger et al [1], employs the statistical analysis of temporal fluorescence fluctuations induced by blinking phenomena in fluorophores. SOFI is a simple and versatile method for super-resolution imaging. However, due to the uncontrollable blinking of fluorophores, there are some limitations to using SOFI for several applications, including the limitations of available blinking fluorophores for SOFI, a requirement of using a high-speed camera, and a low signal-to-noise ratio. To solve these limitations, we present a new approach combining SOFI with speckle pattern illumination to create illumination-induced optical fluctuation instead of blinking fluctuation of fluorophore.. This technique effectively overcome the limitations of the conventional SOFI since illumination-induced optical fluctuation is possible to control unlike blinking phenomena of fluorophore. And we present the sub-diffraction resolution image using SOFI with speckle illumination.

  • PDF

Growth Mechanism of SnO Nanostructures and Applications as an Anode of Lithium-ion Battery

  • Shin, Jeong-Ho;Park, Hyun-Min;Song, Jae-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.598-598
    • /
    • 2012
  • Rechargeable lithium-ion batteries have been considered the most attractive power sources for mobile electronic devices. Although graphite is widely used as the anode material for commercial lithium-ion batteries, it cannot fulfill the requirement for higher storage capacity because of its insufficient theoretical capacity of 372 mAh/g. For the sake of replacing graphite, Sn-based materials have been extensively investigated as anode materials because they can have much higher theoretical capacities (994 mAh/g for Sn, 875 mAh/g for SnO, 783 mAh/g for $SnO_2$). However, these materials generate huge volume expansion and shrinkage during $Li^+$ intercalation and de-intercalation and result in the pulverization and cracking of the contact between anode materials and current collector. Therefore, there have been significant efforts of avoiding these drawbacks by using nanostructures. In this study, we present the CVD growth of SnO branched nanostructures on Cu current collector without any binder, using a combinatorial system of the vapor transport method and resistance heating technique. The growth mechanism of SnO branched nanostructures is introduced. The SnO nanostructures are evaluated as an anode for lithium-ion battery. Remarkably, they exhibited very high discharge capacities, over 520mAh/g and good coulombic efficiency up to 50 cylces.

  • PDF

First-principle study on interplay between structural and electronic properties of armchair CNTs

  • Lee, Hayoung;Kim, Cheol-Woon
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.472-474
    • /
    • 2014
  • Carbon nanotubes (CNTs) have been intensively investigated since they have been considered as building blocks of nanoscience and nanotechnology. Theoretical and computational studies on CNTs have revealed their physical and chemical properties and helped researchers build various experimental devices to study them in depth. However, there have been only few systematic studies on detailed changes in electronic structures of CNTs due to geometrical structure modifications. In this regard, it is necessary to perform systematic investigations of the modifications in electronic structures of CNTs, as their geometrical configurations are altered, using the first-principles density functional theory. In other words, it is essential to determine the true equilibrium structure of CNTs. We are going to construct different atomic configurations of each nanotube by maintaining the original symmetries, but changing all the other bonding types one by one. Furthermore, as for CNTs, for example, the way the graphene sheet is wrapped is represented by a pair of indices (n,m) and electronic structures of CNTs vary depending on different indices. Therefore, we plan to study and discuss all the significant couplings between electronic and geometric structures in CNTs.

  • PDF

Changes in the porosity of bulk graphite according to the viscosity of resin for impregnation

  • Lee, Sang-Min;Kang, Dong-Su;Kim, Hye-Sung;Roh, Jea-Seung
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.132-134
    • /
    • 2015
  • When manufacturing bulk graphite, pores develop within the bulk during the carbonization process due to the volatile components of the fillers and the binders. As a result, the physical properties of bulk graphite are inferior to the theoretical values. Impregnants are impregnated into the pores generated in the carbonization process through pressurization and/or depressurization. The physical properties of bulk graphite that has undergone impregnation and re-carbonization processes are outstanding. In the present study, a green body was manufactured by molding with natural graphite flakes and phenolic resin at 45 MPa. Bulk graphite was manufactured by carbonizing the green body at 700 and it was subsequently impregnated with impregnants having viscosity of 25.0 cP, 10.3 cP, and 5.1 cP, and the samples were re-carbonized at $700^{\circ}C$. The above process was repeated three times. The open porosity of bulk graphite after the final process was 22.25%, 19.86%, and 18.58% in the cases of using the impregnant with viscosity of 25.0 cP, 10.3 cP, and 5.1 cP, respectively.

Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters

  • Lee, Seung-Ho;Cha, Jinmyung;Sim, Kyunjong;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.605-609
    • /
    • 2014
  • Magnetic multi-granule nanoclusters (MGNCs) were investigated as an inexpensive means to effectively remove arsenic from aqueous environment, particularly groundwater sources consumed by humans. Various size MGNCs were examined to determine both their capacity and efficiency for arsenic adsorption for different initial arsenic concentrations. The MGNCs showed highly efficient arsenic adsorption characteristics, thereby meeting the allowable safety limit of $10{\mu}g/L$ (ppb), prescribed by the World Health Organization (WHO), and confirming that 0.4 g and 0.6 g of MGNCs were sufficient to remove 0.5 mg/L and 1.0 mg/L of arsenate ($AsO_4{^{3-}}$) from water, respectively. Adsorption isotherm models for the MGNCs were used to estimate the adsorption parameters. They showed similar parameters for both the Langmuir and Sips models, confirming that the adsorption process in this work was active at a region of low arsenic concentration. The actual efficiency of arsenate removal was then tested against 1 L of artificial arsenic-contaminated groundwater with an arsenic concentration of 0.6 mg/L in the presence of competing ions. In this case, only 1.0 g of 100 nm MGNCs was sufficient to reduce the arsenic concentrations to below the WHO permissible safety limit for drinking water, without adjusting the pH or temperature, which is highly advantageous for practical field applications.

Mechanical Stability Evaluation of Thin Film with Spin-coater (스핀코터를 이용한 박막의 기계적 안정성 평가)

  • Kim, Ji Eun;Kim, Jung Hwan;Hong, Seongchul;Cho, HanKu;Ahn, Jinho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.6-11
    • /
    • 2016
  • For high volume manufacturing using extreme ultraviolet (EUV) lithography, mask protection from contamination during lithography process must be solved, and EUV pellicle is the strongest solution. Based on the technical requirements of EUV pellicle, EUV pellicle should have large membrane area ($110{\times}140mm^2$) with film transmittance over 90% and mechanical stability. Even though pellicle that satisfies size standard with high transmittance has been reported, its mechanical stability has not been confirmed, nor is there a standard to evaluate the mechanical stability. In this study, we suggest a rather simple method evaluating mechanical stability of pellicle membrane using spin-coater which can emulate the linear accelerated motion. The test conditions were designed by simulating the acceleration distribution inside pellicle membrane through correlating the linear acceleration and centripetal acceleration, which occurs during linear movement and rotation movement, respectively. By these simulation results, we confirmed the possibility of using spin-coater to evaluate the mechanical stability of EUV pellicle.

Collective effect of hydrogen in argon and Mg as ambiance for the heat treatment on MgB2

  • Sinha, B.B.;Jang, S.H.;Chung, K.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.24-28
    • /
    • 2014
  • Magnesium diboride superconductor is still of considerable interest because of its appealing characteristics towards application mainly at around 20 K. Unlike Nb-based superconductors, $MgB_2$ can be operated by cryogen-free cooler which provides a cost effective alternative at low field of around 2-5 T. To explore this operating field region considerable efforts are necessary to marginally improve the superconducting properties of $MgB_2$. Under this situation, even the heat treatment environment during the synthesis is considered as an important factor. The addition of $H_2$ gas in small amount with Ar as a mixed gas during annealing has an adverse effect on the superconducting properties of $MgB_2$. It is although interesting to find that the presence of Mg vapor along with hydrogen during heat treatment results in the appreciable improvement in the flux pinning and the overall response of the critical current density for the ex-situ $MgB_2$ samples.

Effect of Phonons on Valley Depolarization in Monolayer WSe2

  • Chellappan, Vijila;Pang, Ai Lin Christina;Sarkar, Soumya;Ooi, Zi En;Goh, Kuan Eng Johnson
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.766-773
    • /
    • 2018
  • In this paper, temperature dependence of the excitonic bands in a mechanically exfoliated tungsten diselenide ($WSe_2$) monolayer is studied using photoluminescence and circular dichroic photoluminescence (PL) in the temperature range between 8 and 300 K. The peak energies associated with the neutral exciton (A), charged exciton (trion) and localized excitons are extracted from the PL spectra revealing a trion binding energy of around 30 meV. The circular dichroic PL measured at 8 K shows about 45% valley polarisation that sharply reduces with increasing temperature to 5% at 300 K with photoexcitation energy of 1.96 eV. A detailed analysis of the emission line-width suggests that the rapid decrease of valley polarisation with the increase of temperature is caused by the strong exciton-phonon interactions which efficiently scatter the excitons into different excitonic states that are easily accessible due to the supply of excess photoexcitation energy. The emission line-width broadening with the increase of temperature indicate residual exciton dephasing lifetime < 100 fs, that correlates with the observed rapid valley depolarisation.