• Title/Summary/Keyword: nanorod bundles

Search Result 5, Processing Time 0.021 seconds

Synthesis and luminescence properties of lanthanum oxides/hydroxides nanorod bundles

  • Hussain, Sk. Khaja;Raju, G. Seeta Rama;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.171.2-171.2
    • /
    • 2015
  • Nowadays, trivalent rare-earth ($RE^{3+}$) ions activated metal oxides have been proved to be excellent host materials due to their various applications. Facile wet-chemical technique have been considered as the best synthetic route due its intensive interest in the preparation of nanostructures. Europium ion doped lanthanum hydroxide ($La(OH)_3:Eu^{3+}$) phosphors were synthesized by the facile wet chemical method using the hexamethylenetetramine (HMTA) as a mediated surfactant. The thermal behavior for the $La(OH)_3:Eu^{3+}$ phosphors was investigated by thermogravimetric and differential thermal analysis method. The morphological studies were measured by scanning electron microscope and transmission electron microscope measurements, indicating three-dimensional (3D) flower-like $La(OH)_3:Eu^{3+}$ nanorod bundles. After subsequent annealing process, the lanthanum oxide ($La_2O_3:Eu^{3+}$) phosphor exhibited similar kind of morphology. The synthesized $La(OH)_3:Eu^{3+}$ and $La_2O_3:Eu^{3+}$ samples were characterized by X-ray powder diffraction and Fourier transform infrared spectroscopy. Furthermore, photoluminescence and cathodoluminescence properties were studied in details.

  • PDF

Photoelectrochemical Cell Study on Closely Arranged Vertical Nanorod Bundles of CdSe and Zn doped CdSe Films

  • Soundararajan, D.;Yoon, J.K.;Kwon, J.S.;Kim, Y.I.;Kim, S.H.;Park, J.H.;Kim, Y.J.;Park, D.Y.;Kim, B.C.;Wallac, G.G.;Ko, J.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2185-2189
    • /
    • 2010
  • Closely arranged CdSe and Zn doped CdSe vertical nanorod bundles were grown directly on FTO coated glass by using electrodeposition method. Structural analysis by XRD showed the hexagonal phase without any precipitates related to Zn. FE-SEM image showed end capped vertically aligned nanorods arranged closely. From the UV-vis transmittance spectra, band gap energy was found to vary between 1.94 and 1.98 eV due to the incorporation of Zn. Solar cell parameters were obtained by assembling photoelectrochemical cells using CdSe and CdSe:Zn photoanodes, Pt cathode and polysulfide (1M $Na_2S$ + 1M S + 1M NaOH) electrolyte. The efficiency was found to increase from 0.16 to 0.22 upon Zn doping. Electrochemical impedance spectra (EIS) indicate that the charge-transfer resistance on the FTO/CdSe/polysulfide interface was greater than on FTO/CdSe:Zn/polysulfide. Cyclic voltammetry results also indicate that the FTO/CdSe:Zn/polysulfide showed higher activity towards polysulfide redox reaction than that of FTO/CdSe/polysulfide.

Effect of SiC Nanorods on Mechanical and Thermal Properties of SiC Composites Fabricated by Chemical Vapor Infiltration

  • Lee, Ho Wook;Kim, Daejong;Lee, Hyeon-Geun;Kim, Weon-Ju;Yoon, Soon Gil;Park, Ji Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.453-460
    • /
    • 2019
  • To reduce residual pores of composites and obtain a dense matrix, SiCf/SiC composites were fabricated by chemical vapor deposition (CVI) using SiC nanorods. SiC nanorods were uniformly grown in the thickness direction of the composite preform when the reaction pressure was maintained at 50 torr or 100 torr at 1,100℃. When SiC nanorods were grown, the densities of the composites were 2.57 ~ 2.65 g/㎤, higher than that of the composite density of 2.47 g/㎤ for non-growing of SiC nanorods under the same conditions; grown nanorods had uniform microstructure with reduced large pores between bundles. The flexural strength, fracture toughness and thermal conductivity (room temperature) of the SiC nanorod grown composites were 412 ~ 432 MPa, 13.79 ~ 14.94 MPa·m1/2 and 11.51 ~11.89 W/m·K, which were increases of 30%, 25%, and 25% compared to the untreated composite, respectively.

Effects of Growth Temperature on Hydrothermally Grown ZnO Nanorod Arrays (수열합성법으로 성장된 산화 아연 나노로드의 성장 온도에 따른 구조적, 광학적 특성 연구)

  • Jeong, Yong-Il;Ryu, Hyuk-Hyun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.211-216
    • /
    • 2011
  • In this study, the effects of growth temperature on structural and optical properties of hydrothermally grown ZnO nanorod arrays have been investigated. Zinc nitrate ($Zn(NO_3)_2$) and hexamethylenetetramine were used as precursors. The ZnO buffered Si(100) with a thickness of 40 nm was used as the substrates. The ZnO nanorods were grown on these substrates with the temperature ranging from 55 to $115^{\circ}C$. The results were characterized by scanning electron microscope, X-ray diffraction and room temperature photoluminescence measurements. Well-aligned ZnO nanorods arrays were obtained from all samples. The tips of nanorods were flat when the temperature was less than $95^{\circ}C$, and the sharp-tip nanoneedle-like morphologies were obtained with the temperature of $115^{\circ}C$. In addition, some bundles were on the nanorods arrays with $115^{\circ}C$ due to the non-equilibrium growth. The growth temperature could affect the crystal and optical properties of ZnO. For the effects on crystal properties, the intensity of (002) peak was increased as the temperature was increased to $75^{\circ}C$, then decreased as the temperature was further increased to $115^{\circ}C$. As for the effects on optical properties, the intensity ratio of UV peak to visible peak is increased with the temperature increasing and the strongest UV peak intensity was obtained with the growth temperature of $95^{\circ}C$.

Fabrication of Niobium Oxide Nanorods by the Anodization Method (양극산화법에 의한 니오븀 산화물 나노로드 제조)

  • Jung, Eun-Hye;Chang, Jeong-Ho;Jeong, Bong-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.196-200
    • /
    • 2011
  • The formation of niobium oxide microcones on niobium substrates was investigated in NaF to the HF electrolytes. This condition builds on the uniqueness of the microstructures niobium oxide. The dimensions and integrity of the bulk microstructures were found to be strongly dependent on potential, temperature, electrolyte composition, and anodization time. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodization. From XRD patterns of the anodized specimens, the microcones consisted of crystalline $Nb_2O_5$. We demonstrated niobium oxide microcone structures with nanorods. The anodized niobium oxide microcone texture revealed nanorod bundles. The surface of $Nb_2O_5$ microcones is very regular and has a nano-scale. The surface morphologies of the nanorods were examined using FE-SEM. EDS analyses show that the anodically prepared niobium oxide consists of $Nb_2O_5$. The aim of this study is to find the condition of forming the favorable nanorods by anodization method.