• 제목/요약/키워드: nanorod

검색결과 285건 처리시간 0.033초

Optically Actuated Carbon Nanocoils

  • Wang, Peng;Pan, Lujun;Li, Chengwei;Zheng, Jia
    • Nano
    • /
    • 제13권10호
    • /
    • pp.1850112.1-1850112.6
    • /
    • 2018
  • Optical manipulation on microscale and nanoscale structures opens up new possibilities for assembly and control of microelectromechanical systems and nanoelectromechanical systems. Static optical force induces constant displacement while changing optical force stimulates vibration of a microcantilever/nanocantilever. The vibratory behavior of a single carbon nanocoil cantilever under optical actuation is investigated. A fitting formula to describe the laser-induced vibration characteristics is deduced based on a classical continuum model, by which the resonance frequency of the carbon nanocoil can be determined directly and accurately. This optically actuated vibration method could be widely used in stimulating quasi-1D micro/nanorod-like materials, and has potential applications in micro-/nano-opto-electromechanical systems.

Finite element analysis for longitudinal vibration of nanorods based on doublet mechanics

  • Ufuk Gul;Metin Aydogdu
    • Advances in nano research
    • /
    • 제15권5호
    • /
    • pp.411-422
    • /
    • 2023
  • In the present study, the axial vibration of the nanorods is investigated in the framework of the doublet mechanics theory. The equations of motion and boundary conditions of nanorods are derived by applying the Hamilton principle. A finite element method is developed to obtain the vibration frequencies of nanorods for different boundary conditions. A two-noded higher order rod finite element is used to solve the vibration problem. The natural frequencies of nanorods obtained with the present finite element analysis are validated by comparing the results of classical doublet mechanics and nonlocal strain gradient theories. The effects of rod length, mode number and boundary conditions on the axial vibration frequencies of nanorods are examined in detail. Mode shapes of the nanorods are presented for the different boundary conditions. It is shown that the doublet mechanics model can be used for the dynamic analysis of nanotubes, and the presented finite element formulation can be used for mechanical problems of rods with unavailable analytical solutions. These new results can also be used as references for the future studies.

수열합성법에 의해 Zn 기판 위에 제조된 ZnO 나노로드의 특성 (Fabrication and characteristics of ZnO nanorods grown on Zn substrates by the hydrothermal method)

  • 성지혜;김진호;황종희;임태영;연득호;조용수
    • 한국결정성장학회지
    • /
    • 제21권4호
    • /
    • pp.147-152
    • /
    • 2011
  • 수열합성법에 의해 ZnO 씨앗층이 코팅된 Zn 기판 위에 제조된 ZnO 나노로드는 주로 ZnO 전구체 농도에 따라 연구되었다. 주사전자현미경과 X선 회절분석기를 사용하여 얻은 그림은 실험 조건에 따라 변화되는 ZnO 나노로드의 미세구조와 결정상을 밝혀내기 위해 측정되었다. 나노로드의 형태는 전구체 농도에 강하게 결정된다. 예를 들어, 600~700 nm의 직경과 $6.75{\mu}m$의 길이를 갖는 육방정계 구조의 수직 성장된 ZnO 나노로드는 0.015 M의 가장 높은 농도에서 명확하게 관찰되었다. 강한 육방정계 구조는 가장 높은 PL 강도와 $1000{\mu}A$에서 약 6.069 V의 우수한 전압 값과 관련이 있다고 생각된다.

태양광 물 분해를 통한 수소 생산용 Cu2O/CuO 이종접합 광전극의 제작 및 광전기화학적 특성 (Fabrication and Photoelectrochemical Properties of a Cu2O/CuO Heterojunction Photoelectrode for Hydrogen Production from Solar Water Splitting)

  • 김소영;김효진;홍순구;김도진
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.604-610
    • /
    • 2016
  • We report on the fabrication and characterization of a novel $Cu_2O/CuO$ heterojunction structure with CuO nanorods embedded in $Cu_2O$ thin film as an efficient photocathode for photoelectrochemical (PEC) solar water splitting. A CuO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method; then, a $Cu_2O$ thin film was electrodeposited onto the CuO nanorod array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy, as well as Raman scattering. The PEC properties of the fabricated $Cu_2O/CuO$ heterojunction photocathode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the $Cu_2O/CuO$ photocathode was found to exhibit negligible dark current and high photocurrent density, e.g. $-1.05mA/cm^2$ at -0.6 V vs. $Hg/HgCl_2$ in $1mM\;Na_2SO_4$ electrolyte, revealing the effective operation of the oxide heterostructure. The photocurrent conversion efficiency of the $Cu_2O/CuO$ photocathode was estimated to be 1.27% at -0.6 V vs. $Hg/HgCl_2$. Moreover, the PEC current density versus time (J-T) profile measured at -0.5 V vs. $Hg/HgCl_2$ on the $Cu_2O/CuO$ photocathode indicated a 3-fold increase in the photocurrent density compared to that of a simple $Cu_2O$ thin film photocathode. The improved PEC performance was attributed to a certain synergistic effect of the bilayer heterostructure on the light absorption and electron-hole recombination processes.

광역학적/광열치료 응용을 위한 광증감제가 결합한 골드 나노로드의 합성 및 특성분석 (Synthesis and Characterization of Photosensitizer-conjugated Gold Nanorods for Photodynamic/Photothermal Therapy)

  • 최종선;김소연
    • 공업화학
    • /
    • 제27권6호
    • /
    • pp.599-605
    • /
    • 2016
  • 최근 효과적인 암 치료 방법으로 광역학치료(photodynamic therapy)와 광열치료(photothermal therapy)가 주목받고 있다. 본 연구에서는 광열치료에 필요한 광열인자로써의 역할을 할 수 있는 골드 나노로드(AuNR)를 합성하고, 그 표면에 광역학치료를 위한 광증감제(photosensitizer)를 결합하였다. 즉, 골드 나노로드를 체내에 오래 머무르도록 하기 위해 PEG(polyethylene glycol) 및 효과적인 암 표적지향성을 위해 FA (folic acid) 리간드를 도입하였고, FA-PEG와 poly-${\beta}$-benzyl-L-aspartate (PBLA)로 이루어진 블록 공중합체를 3,4-dihydroxy hydrocinnamic acid (HCA) linker를 사용하여 골드 나노로드의 표면개질을 하였다. 또한 $AgNO_3$의 feeding ratio 변화를 통해 다양한 aspect ratio를 갖는 골드 나노로드를 합성하였고, UV-visible spectrophotometer, $^1H$-NMR, XPS, TEM 분석을 통해 FA-PEG-$P(Asp)_{50}$-HCA-AuNR100의 물리 화학적 특성과 morphology를 분석하였고, 성공적인 표면 개질을 확인할 수 있었다. 골드 나노로드의 표면 개질을 통한 생체 적합성 약물전달체의 합성은 효과적인 암 진단 및 다양한 광역학/광열치료 분야에 응용이 될 수 있을 것으로 기대된다.

Controlling Size, Shape and Polymorph of TiO2 Nanoparticles by Temperature-Controlled Hydrothermal Treatment

  • Kwon, Do Hun;Jung, Young Hee;Kim, Yeong Il
    • 대한화학회지
    • /
    • 제59권3호
    • /
    • pp.238-245
    • /
    • 2015
  • The crystallization and morphology change of amorphous titanias by hydrothermal treatment have been investigated. The amorphous titanias were prepared by pure water hydrolysis of two different precursors, titanium tetraisopropoxide (TTIP) and TTIP modified with acetic acid (HOAc) and characterized prior to hydrothermal treatment. In order to avoid complicate situation, the hydrothermal treatment was performed in a single solvent water with and without strong acids at various temperatures. The effects of strong acid, temperature and time were systematically investigated on the transformation of amorphous titania to crystalline TiO2 under simple hydrothermal condition. Without strong acid the titanias were transformed into only anatase phase nanoparticle regardless of precursor type, temperature and time herein used (up to 250 ℃ and 48 hours). The treatment temperature and time effected only on the crystalline size, not on the crystal phase et al. However, it was clearly revealed that the strong acids such as HNO3 and HCl catalyzed the formation of rutile phase depending on temperature. HCl was slightly better than HNO3 in this catalytic activity. The morphology of rutile TiO2 formed was also a little affected by the type of acid. The precursor modifier, HOAc slightly reduced the catalytic activity of the strong acids in rutile phase formation.

Size dependent axial free and forced vibration of carbon nanotube via different rod models

  • Khosravi, Farshad;Simyari, Mahdi;Hosseini, Seyed A.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.157-172
    • /
    • 2020
  • The aim of this present research is the effect of the higher-order terms of the governing equation on the forced longitudinal vibration of a nanorod model and making comparisons of the results with classical nonlocal elasticity theory. For this purpose, the free axial vibration along with forced one under the two various linear and harmonic axial concentrated forces in zigzag Single-Walled Carbon Nanotube (SWCNT) are analyzed dynamically. Three various theories containing the classical theory, which is called Eringen's nonlocal elasticity, along with Rayleigh and Bishop theories (higher-order theories) are established to justify the nonlocal behavior of constitutive relations. The governing equation and the related boundary conditions are derived from Hamilton's principle. The assumed modes method is adopted to solve the equation of motion. For the free axial vibration, the natural frequencies are calculated for the various values of the nonlocal parameter only based on Eringen's theory. The effects of the nonlocal parameter, thickness, length, and ratio of the excitation frequency to the natural frequency over time in dimensional and non-dimensional axial displacements are investigated for the first time.

Optical Properties and Field Emission of ZnO Nanorods Grown on p-Type Porous Si

  • Park, Taehee;Park, Eunkyung;Ahn, Juwon;Lee, Jungwoo;Lee, Jongtaek;Lee, Sang-Hwa;Kim, Jae-Yong;Yi, Whikun
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1779-1782
    • /
    • 2013
  • N-type ZnO nanorods were grown on p-type porous silicon using a chemical bath deposition (CBD) method (p-n diode). The structure and geometry of the device were examined by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) while the optoelectronic properties were investigated by UV/Vis absorption spectrometry as well as photoluminescence and electroluminescence measurements. The field emission (FE) properties of the device were also measured and its turn-on field and current at 6 $V/{\mu}m$ were determined. In principle, the growth of ZnO nanorods on porous siicon for optoelectronic applications is possible.

Effect of Titanium Nanorods in the Photoelectrode on the Efficiency of Dye Sensitized Solar Cells

  • Rahman, Md. Mahbubur;Kim, Hyun-Yong;Jeon, Young-Deok;Jung, In-Soo;Noh, Kwang-Mo;Lee, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2765-2768
    • /
    • 2013
  • The effect of $TiO_2$ nanorods (TNR) and nanoparticles (TNP) composite photoelectrodes and the role of TNR to enhance the energy conversion efficiency in dye-sensitized solar cells (DSSCs) was investigated. The 5% TNR content into the TNP photoelectrode significantly increased the short-circuit current density ($J_{sc}$) and the open-circuit potential ($V_{oc}$) with the overall energy conversion efficiency enhancement of 13.6% compared to the pure TNP photoelectrode. From the photochemical and impedemetric analysis, the increased $J_{sc}$ and $V_{oc}$ for the 5% TNR/TNP composite photoelectrode was attributed to the scattering effect of TNR, reduced electron diffusion path and the suppression of charge recombination between the composite photoelectrode and electrolyte or dye.