• Title/Summary/Keyword: nanoparticle

Search Result 1,607, Processing Time 0.032 seconds

Monitoring Airborne Nanoparticle Concentrations by Task in a Laboratory Making Carbon Nanotube Films (탄소나노튜브 필름 제조 실험실의 세부작업별 공기 중 나노입자 노출 농도)

  • Ha, Ju-Hyun;Shin, Yong-Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.4
    • /
    • pp.248-255
    • /
    • 2010
  • Airborne nanoparticle concentrations in three metrics (particle surface area concentration, particle number concentration, and particle mass concentrations) were measured by task in a laboratory making carbon nanotubes (CNTs) films using three direct reading instruments. Because of the conducted other researcher's experiment before the tasks, airborne nanoparticle surface area and number concentrations are the highest at the first time conducted weighing and mixing by sonication task, respectively. Because of the mist generated during mixing by sonication, the highest airborne nanoparticle surface area and PM1 concentrations were measured in the task among the total. Nanoparticle surface area concentrations at the researchers' breathing zones had high correlation (r=0.93, p<0.01) with those measured at an area in the laboratory. This result indicates that nanoparticles generated during the experiment contaminated the whole room air. When the experiment performed all the fume hoods weren't operated and making CNTs films task were conducted in the out of the fume hoods. In conclusion, researchers performing making CNTs film experiments were exposed to airborne nanoparticles generated during the experiment without adequate controls. We recommend that adequate controls should be implemented so that workers' exposures to airborne nanoparticle are limited to minimum levels.

Development of Membrane Filters with Nanostructured Porous Layer by Coating of Metal Nanoparticles Sintered onto a Micro-Filter (마이크로-필터 상에 소결 처리된 금속 나노입자 코팅에 의한 나노구조 기공층 멤브레인 필터 개발)

  • Lee, Dong-Geun;Park, Seok-Joo;Park, Young-Ok;Ryu, Jeong-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.617-623
    • /
    • 2008
  • The membrane filter adhered with nanostructured porous layer was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto a conventional micron-fibrous metal filter as a substrate filter. The Sintered-Nanoparticle-Agglomerates-coated NanoStructured porous layer Membrane Filter (SNA-NSMF), whose the filtration performance was improved compared with the conventional metal membrane filters, was developed by adhesion of nanoparticle-agglomerates of dendrite structure sintered onto the micron-fibrous metal filter. The size of nanoparticle-agglomerates of dendrite structure decreased with increasing the sintering temperature because nanoparticle-agglomerates shrank. When shrinking nanoparticle-agglomerates were deposited and treated with heat onto the conventional micron-fibrous metal filter, pore size of nanostructured porous layer decreased. Therefore, pressure drops of SNA-NSMFs increased from 0.3 to 0.516 kPa and filtration efficiencies remarkably increased from 95.612 to 99.9993%.

Synthesis of Gold Nanoparticles by Chemical Reduction Method for Direct Ink Writing

  • Cho, Young-Sang;Son, Soo-Jung;Kim, Young-Kuk;Chung, Kook-Chae;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.390-398
    • /
    • 2010
  • Aqueous gold nanoparticle dispersion was synthesized by chemical reduction method using diethanolamine as reducing agent and polyethyleneimine as dispersion stabilizer. The synthesis conditions for the stable dispersion of the gold nanoparticle suspension were determined by changing the amount of the reducing agent and dispersant during the wet chemical synthesis procedures. The face centered cubic lattice structure of the gold nanoparticles was confirmed by using X-ray diffraction and the morphologies of the nanoparticles were observed by transmission electron microscope. The synthesized gold nanoparticle dispersion was concentrated by evaporating the dispersion medium at room temperature followed by the addition of ethyleneglycol as humectant for the increase of the elastic properties to obtain gold nanoparticle inks for direct ink writing process. The line patterns were obtained with the gold nanoparticle inks during the writing procedures and the morphologies of the fine patterns were observed by scanning electron microscope.

Improving the Skin Penetration of Cosmetics Containing Omega 3 Fatty Acids

  • KIM, Han-Sook;HAN, Sien-Ho
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.4 no.4
    • /
    • pp.15-25
    • /
    • 2021
  • Purpose: The purpose of this study is to form a new cosmetic market through the development of a composition with high skin permeability after adding omega 3 to Aloe Vera soothing gel products. Research design, data and methodology: In this study, omega-3 fatty acids were added to cosmetic products in the form of soothing gels. By applying nanoparticle technology to rapidly increase the penetration of raw materials into the skin, characteristics related to skin moisture and regeneration were determined. Omega-3 was used as a raw cosmetic material. Then 5% and 15% nanoparticle aqueous products containing omega-3 were prepared. The developed water hydrate was subjected to skin permeability test using artificial skin. Results: 53 hours of artificial transdermal penetration of the developed composition, the ethanol-based omega-3 containing nanoparticle solubilized raw material was about three times higher penetration than the ethanol-based omega-3 containing nanoparticle solubilized raw material. Conclusions: The raw material product (SR-1901) containing 5% of omega-3 nanoparticle water hydrate has skin regeneration ability and pain reduction effect. It can be expected that the skin cosmetics market will be reorganized into a new distribution structure and opportunity through omega-3 supplemented soothing gel cosmetics with improved efficacy than existing cosmetics.

Effect of Nano Particles on the Hathcing rate of Artemia sp. Cyst Zooplankton (나노입자가 알테미아(Artemia sp.) Cyst 부화율에 미치는 영향)

  • Jeong, Yeon-Kyu;Lee, Byeong-Woo;Park, Chan-Il;Choi, Kwang-Soo;Kim, Mu-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.302-306
    • /
    • 2009
  • 9 kinds of nanoparticle used for this study was a particle with the size of less than 100 nm of diameter, and Artemia sp. cyst examined what kind of influence to have upon the process hatched out in nauplius. 82% hatched in nauplius at the opposition ward where a nanoparticle wasn't added after 24 time course. AGZ020, Nano silver, P-25, Sb and SnO nanoparticle showed hatching rate of 18%, 20%, 13%, 50% and 0% respectively by the 20mg/L density, and it became clear that a harmful effect is big, but I had a harmful effect compared with the opposition ward by 75%, 60%, 73% and 73% respectively by Ag-$TiO_2$, In, Sn and Zn nanoparticle, but a feeble thing was known relatively compared with AGZ020, Nano silver, P-25, Sb and SnO nanoparticle. The difference has caused this with the ingredient a nanoparticle has. Ag is included 2 % and AGZ020, Nano silver and P-25 nanoparticle are used widely as anti-fungus agent, and the SnO nanoparticle which became combination is a light catalyst pill, and oxygen is used for a Sn particle. This and others, a possibility that use is generalized and flows into aquatic environment in sequence the home electronics, functionality cosmetics, anti-fungus agent and a light catalyst pill at present becomes high for nanoparticles and others. The anxiety which has an influence on the ecology world in the water with this can be generated, so I'd have to study the potential danger a nanoparticle has continuously.

  • PDF

Effect of Nano Particles on the Hathcing rate of Artemia sp. Cyst (알테미아(Artemia sp.) Cyst 부화율에 미치는 나노입자의 영향)

  • Lee, Byeong-Woo;Cho, Sang-Man;Park, Chan-Il;Jeong, Woo-Gun;Kim, Mu-Chan
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.137-141
    • /
    • 2008
  • 9 kinds of nanoparticle used for this study was a particle with the size of less than 100 nm of diameter, and Artemia sp. cyst examined what kind a influence to have upon the process hatched out in nauplius. 82% hatched in nauplius at the opposition ward where a nanoparticle wasn't added after 24 time course. AGZ020, Nano silver, P-25, Sb and SnO nanoparticle showed hatching rate of 18%, 20%, 13%, 50% and 0% respectively by the 20mg/L density, and it became clear that a harmful effect is big, but I had a harmful effect compared with the opposition ward by 75%, 60%, 73% and 73% respectively by Ag-$TiO_2$, In, Sn and Zn nanoparticle, but a feeble thing was known relatively compared with AGZ020, Nano silver, P-25, Sb and SnO nanoparticle. The difference was mused this with the ingredient a nanoparticle has. Ag is included 2% and AGZ020, Nano silver and P-25 nanoparticle are used widely as anti-fungus agent, and the SnO nanoparticle which became combination is a light catalyst pill, and oxygen is used for a Sn particle. This and others, a possibility that use is generalized and flows into aquatic environment in sequence the home electronics, functionality cosmetics, anti-fungus agent and a light catalyst pill at present becomes high for nanoparticles and others. The anxiety which has an influence on the ecology world in the water with this can be generated, so I'd have to study the potential danger a nanoparticle has continuously.

  • PDF

Use of Gold Nanoparticle Fertilizer Enhances the Ginsenoside Contents and Anti-Inflammatory Effects of Red Ginseng

  • Kang, Hee;Hwang, Yun-Gu;Lee, Taek-Guen;Jin, Cheng-Ri;Cho, Chi Heung;Jeong, Hee-Yeong;Kim, Dae-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1668-1674
    • /
    • 2016
  • Red ginseng, a steamed and sun-dried ginseng, is a popular health-promoting food in Korea and other Asian countries. We introduced nanofertilizer technology using gold nanoparticles in an effort to develop red ginseng with an elevated level of ginsenosides, the main active compounds of ginseng. Shoots of 6-year-old ginseng plants were fertilized three times with colloidal gold nanoparticle sprays. Red ginseng extract was prepared from the main roots. The concentrations of gold and ginsenosides were measured following gold nanoparticle treatment. To evaluate the anti-inflammatory effects, mouse peritoneal macrophages of male BALB/c mouse were stimulated with lipopolysaccharide plus interferon-γ in the presence of extracts from red ginseng with or without gold nanoparticle treatment. The content of ginsenosides, such as Rg1, Re, Rf, and Rb1, increased in ginseng treated with gold nanofertilizer whereas the steaming process increased only the levels of Rd and Rg3. The levels of nitric oxide, inducible nitric oxide synthase, and interleukin-6, but not tumor necrosis factor-α, were more suppressed in macrophages treated with extract from gold nanoparticle-treated red ginseng. Our results show that the use of a colloidal gold nanoparticle fertilizer improved the synthesis of ginsenosides in ginseng and enhanced the anti-inflammatory effects of red ginseng. Further research is required to elucidate the causal factors for the gold-induced change in ginsenoside synthesis and to determine the in vivo effect of gold nanoparticle-treated ginseng.

A New Mixing Method of SiC Nanoparticle Reinforced Epoxy Composites with Large Concentration of SiC Nanoparticle (대용량 SiC 나노입자 강화 에폭시 복합재료의 새로운 분산방법)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.223-229
    • /
    • 2016
  • SiC nanoparticles were used to increase flexural properties of polymer matrix. This study was to manufacture huge concentration SiC nanoparticle/epoxy composites and to evaluate the dispersion. During mixing SiC nanoparticle and epoxy, 20 wt% SiC nanoparticle in total composites was used with both stirrer and sonication equipment together. Mixing speed and dispersion were improved with the method by using both stirrer and sonication equipment at the same time via mechanical test and FE-SEM. Based on the results, modeling of SiC nanoparticle dispersion could be established. Ultimately, unidirectional carbon fiber reinforced composites was manufactured using 20 wt% SiC nanoparticle/epoxy. Mechanical property of CFRP using dual stirrer and sonication mixing method was better than composites by single sonication mixing method.

Biological Safety and Anti-hepatofibrogenic Effects of Brassica rapa (Turnip) Nanoparticle

  • Park, Dae-Hun;Li, Lan;Jang, Hyung-Kwan;Kim, Young-Jin;Jang, Ja-June;Choi, Yeon-Shik;Park, Seung-Kee;Lee, Min-Jae
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.317-322
    • /
    • 2009
  • Hepatic fibrosis is one of chronic liver diseases which spread in worldwide and it has high risk to turn advanced cirrhosis and hepatocellualr carcinoma. Brassica family has been produced for commercial purpose and in Korea Brassica rapa (Turnip) is cultivated in Ganghwa County, Gyeonggi-do Korea and used for making Kimchi. Recently pharmacological effects of turnip have been known; diabete mellitus modulation, alcohol oxidization, and fibrosis inhibition. In previous study we found antifibrogenic effect of turnip water extract and in this study we made turnip nanoparticle to promote turnip delivery into liver. At the same time we assessed the biological safety of turnip nanoparticle. Thioacetamide (TAA) induced hepatic nodular formation and fibrosis (mean of fibrosis score: 4). However, 1% turnip nanoparticle inhibited TAA-induced hepatic nodular formation and fibrosis (mean of fibrosis score: 2-3). Activities of serum enzymes (aspartic acid transaminase (AST), alanine transaminase (ALT), and total bilirubin (T-Bil)), complete blood count (CBC), and the appearance of organs were not different from control and 1% turnip nanoparticle treatment. Conclusively 1% turnip nanoparticle significantly reduced TAA-induced hepatic fibrosis and was safe in 7-weeks feeding.

Experimental Investigation of CHF Enhancement on the Modified Surface Under Pool Boiling (개질된 표면을 이용한 풀비등 임계열유속 증진에 관련한 실험적 연구)

  • Kang, Soon-Ho;Ahn, Ho-Seon;Jo, Hang-Jin;Kim, Moo-Hwan;Kim, Hyung-Mo;Kim, Joon-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.840-848
    • /
    • 2009
  • In the boiling heat transfer mechanism, CHF(critical heat flux) is the significantly important parameter of the system. So, many researchers have been struggling to enhance the CHF of the system in enormous methods. Recently, there were lots of researches about enormous CHF enhancement with the nanofluids. In that, the pool boiling CHF in nanofluids has the significantly increased value compared to that in pure water because of the deposition of the nanoparticle on the heater surface in the nanofluids. The aim of this study is the comparison of the effect of the nanoparticle deposited surface and the modified surface which has the similar morphology and made by MEMS fabrication. The nanoparticle deposited surface has the complex structures in nano-micro scale. Therefore, we fabricated the surfaces which has the similar wettability and coated with the micro size post and nano structure. The experiment is performed in 3 cases : the bare surface with 0.002% water-ZnO nanofluids, the nanoparticle deposited surface with pure water and the new fabricated surface with pure water. The contact angle, a representative parameter of the wettability, of the all 3 cases has the similar value about 0 and the SEM(scanning electron microscope) images of the surfaces show the complex nano-micro structure. From the pool boiling experiment of the each case, the nanoparticle deposited surface with pure water and the fabricated surface with pure water has the almost same CHF value. In other words, the CHF enhancement of the nanoparticle deposited surface is the surface effect. It also shows that the new fabricated surface follows the nanoparticle deposited surface well.