• Title/Summary/Keyword: nanometer CMOS

Search Result 11, Processing Time 0.018 seconds

Influence on Short Channel Effects by Tunneling for Nano structure Double Gate MOSFET (나노구조 이중게이트 MOSFET에서 터널링이 단채널효과에 미치는 영향)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.479-485
    • /
    • 2006
  • The double gate(DG) MOSFET is a promising candidate to further extend the CMOS scaling and provide better control of short channel effect(SCE). DGMOSFETs, having ultra thin undoped Si channel for SCEs control, ale being validated for sub-20nm scaling. A novel analytical transport model for the subthreshold mode of DGMOSFETs is proposed in this paper. The model enables analysis of short channel effect such as the subthreshold swing(SS), the threshold voltage roil-off$({\Delta}V_{th})$ and the drain induced barrier lowering(DIBL). The proposed model includes the effects of thermionic emission and quantum tunneling of carriers through the source-drain barrier. An approximative solution of the 2D Poisson equation is used for the distribution of electric potential, and Wentzel-Kramers-Brillouin approximation is used for the tunneling probability. The new model is used to investigate the subthreshold characteristics of a double gate MOSFET having the gate length in the nanometer range $(5-20{\sim}nm)$ with ultra thin gate oxide and channel thickness. The model is verified by comparing the subthreshold swing and the threshold voltage roll-off with 2D numerical simulations. The proposed model is used to design contours for gate length, channel thickness, and gate oxide thickness.