• Title/Summary/Keyword: nanofiltration membrane fouling

Search Result 34, Processing Time 0.018 seconds

Influence of inorganic compounds on nanofiltration membrane fouling with Al hydrolysis products (알루미늄 수화물 나노여과 막오염에 대한 공존염의 영향에 관한 연구)

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.479-488
    • /
    • 2011
  • Nanofiltration was performed with polyaluminium chloride solutions at different pH conditions to understand effects of inorganic compounds on aluminum hydrolysis products, i.e., three distinctive groups of aluminum species: polymeric Al at low pH; $Al(OH)_3$ at neutral pH; and ${Al(OH)_4}^-$ at high pH. The PACl solution was prepared to be approximately 4.0mM and adjusted to the designated pH. The influence of inorganic compounds on Al species fouling was investigated with 4.9mM $CaCl_2$ and 3.5mM $MgSO_4$ because $Ca^{2+}$, $Mg^{2+}$, $Cl^-$, ${SO_4}^{2-}$ are the most common inorganics in the drinking water. NF membrane fouling was measured by flux decline rate. The impact of $CaCl_2$ was not significant on the individual Al hydrolysis products fouling. However, the flux decline rate was drastically changed in the presence of $MgSO_4$. The concentration of particulate matters was considerably increased possibly due to interaction between Al species and ${SO_4}^{2-}$ where $MgSO_4$ was introduced. The particulates were accumulated on the membrane and enhanced the hydraulic resistance of the cake layer. In addition, conductivity removal of the membrane was decreased when Al-hydroxide was dominant due to reduction of membrane surface charge. The rejection of $Ca^{2+}$and $Mg^{2+}$ were considerably different, which implys that composition of inorganics paly a role on conductivity removal.

Ceramic based Nanofiltration Membrane for Wastewater Treatment: A Review (폐수처리를 위한 세라믹계 나노여과막: 리뷰)

  • Yeonsoo, Kwak;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.390-400
    • /
    • 2022
  • Nanofiltration (NF) membranes are more popular than reverse osmosis (RO) membranes as they can be operated at much lower pressures for applications in treatment of wastewater from industries like food processing and pharmaceutical as well as municipal sewage water. The separation mechanism in case of NF membranes is based on solution diffusion as well as sieving, for which the crosslinking density of the thin film of the composite membrane is less then RO membrane. Unlike ceramic membranes, membrane fouling is one of the chronic problems that occur during the nanofiltration process in polymeric membranes. Membrane cleaning is done to get rid of reversible as well as irreversible fouling by treatment with sodium hypochlorite. Compared to polymeric membranes, ceramic membranes show higher stability against these agents. In this review different types of ceramic membrane applied wastewater treatment by NF process are discussed.

Surface Modification of Nanofiltration Membrane with Silane Coupling Agents for Separation of Dye (실란 표면 개질된 나노복합막의 염료 분리 특성)

  • Park, Hee Min;Lim, Jee Eun;Kim, Seong Ae;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.414-423
    • /
    • 2018
  • In this study, the commercial nanofiltration membranes were modified with octyltrimethoxysilane(OcTMS) and (3-aminopropyl)trimethoxysilane (APTMS) to improve fouling resistance and to separate dye. The chemical structure and binding energy of elements of silane-deposited surface were analyzed using XPS analysis. And the morphology and hydrophilicity property of silane-modified NF membrane were analyzed using FE-SEM, EDX, AFM, and contact angle. The surface charge of silane-modified NF membrane was characterized by zeta potentiometer analyzer. As a result, silane-modified NF membrane improved fouling resistance about 2 times as compared with that of the commercial membrane. And the silane-modified NF membranes effectively were removed cation dye over 98%.

Preparation and Characteristics of Fouling Resistant Nanofiltration Membranes (내오염성 나노여과막의 제조 및 특성)

  • Kim, No-Won
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.44-53
    • /
    • 2007
  • The primary objective of this study is to increase the extent of water flux and fouling resistance of nano-filtration or reverse osmosis membranes. This study was performed to investigate the effect of surface characteristics of silane coated membranes on modified fouling index. Commercial polyamide composite RO membrane (RE1812-LP) and NF membrane (ESNA4040-LF) were treated with silane coupling agents in ethanol at five different concentrations. The silane coupling reagent, aminopropylmethoxydiethoxysilane, contains one aminoalkyl and three alkoxy groups. The hydrophilic effect of aminoalkyl group of APMDES on the permeability and fouling resistance of the modified membrane was examined. The surfaces of the modified membranes were characterized by FE-SEM, contact angle analyzer, and zeta potentiometer in order to confirm successful sol-gel methods. The modified NF membranes showed significantly enhanced water flux and fouling resistance without a decrease in salt rejection in divalent ionic feed solution.

Use of laminar flow water storage tank (LFWS) to mitigate the membrane fouling for reuse of wastewater from wafer processes

  • Sun, Darren Delai;Wu, You
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.221-230
    • /
    • 2012
  • This study employed the modified fouling index (MFI) to determine the performance of a two-step recycling system - a membrane filtration integrated laminar flow water storage (LFWS) tank followed by an ion exchange process to reclaim ultrapure water (UPW) from the wastewater generated from semiconductor wafer backgrinding and sawing processes. The first step consisted of the utilization of either ultrafiltration (UF) or nanofiltration (NF) membranes to remove solids in the wastewater where the second step consisted of an ion exchanger to further purify the filtrate. The system was able to produce high purity water in a continuous operating mode. However, higher recycling cost could be incurred due to membrane fouling. The feed wastewater used for this study contained high concentration of fine particles with low organic and ionic contents, hence membrane fouling was mainly attributed to particulate deposition and cake formation. Based on the MFI results, a LFWS tank that was equipped with a turbulence reducer with a pair of auto-valves was developed and found effective in minimizing fouling by discharging concentrated wastewater prior to any membrane filtration. By comparing flux behaviors of the improved system with the conventional system, the former maintained a high flux than the latter at the end of the experiment.

Fouling behaviours of two stages microalgae/membrane filtration system applied to palm oil mill effluent treatment

  • Teow, Yeit Haan;Wong, Zhong Huo;Takriff, Mohd Sobri;Mohammad, Abdul Wahab
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.373-383
    • /
    • 2018
  • Fouling by solids and microorganisms is the major obstacle limiting the efficient use of membrane wastewater treatment. In our previous study, two stages microalgae/membrane filtration system was proposed to treat anaerobic digested palm oil mill effluent (AnPOME). This two stages microalgae/membrane filtration system had showed great potential for the treatment of AnPOME with high removal of COD, $NH_3-N$, $PO_4{^{3-}}$, TSS, turbidity, and colour. However, fouling behavior of the membrane in this two stages microalgae/membrane filtration system was still unknown. In this study, empirical models that describe permeate flux decline for dead-end filtration (pore blocking - complete, intermediate, and standard; and cake layer formation) presented by Hermia were used to fit the experimental results in identifying the fouling mechanism under different experimental conditions. Both centrifuged and non-centrifuged samples were taken from the medium with 3 days RT intervals, from day 0 to day 12 to study their influence on fouling mechanisms described by Hermia for ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) filtration mode. Besides, a more detailed study on the use of resistance-in-series model for deadend filtration was done to investigate the fouling mechanisms involved in membrane filtration of AnPOME collected after microalgae treatment. The results showed that fouling of UF and NF membrane was mainly caused by cake layer formation and it was also supported by the analysis for resistance-in-series model. Whereas, fouling of RO membrane was dominated by concentration polarization.

Membrane Separation Processes for the Development of Zero-discharge System.(I. Membrane Fouling and Caleaning) (무방류 폐수처리를 위한 막분리공정(I. 막의 오염 및 세척))

  • 고상열;변기수;노수홍
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.21-23
    • /
    • 1994
  • 무방류폐수처리 시스템 개발에 막분리공정이 핵심적인 기술로 자리잡고 있다. 그러나 막분리기술의 경제성을 높히고 적용범위를 확대하기 위해서는 새로운 막의 개발과 폐수처리에서 항상 문제가 되는 fouling의 원인규명 및 막세척방법의 개발이 절실히 요구되고 있다. 본 연구에서는 염료폐수처리 및 재활용을 위한 pilot 실험에의 막의 fouling 현상과 세척효과를 역삼투막인 BW-30(2540)과 Nanofiltration막인 NF-40(2540) 모듈을 사용하여 조사하였다. RO 투과수에 의한 물리적 세척법인 flushing과 화학적세척을 실시하여 투과율 회복능력을 조사하였다.

  • PDF

Pre-treatment of textile wastewaters containing Chrysophenine using hybrid membranes

  • lehi, Arash Yunessnia;Mousavirad, Seyed Jalaleddin;Akbari, Ahmad
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.89-112
    • /
    • 2017
  • Dyeing wastewaters are the most problematic wastewater in textile industries and also, growing amounts of waste fibers in carpet industries have concerned environmental specialists. Among different treatment methods, membrane filtration processes as energy-efficient and compatible way, were utilized for several individual problems. In this research, novel hybrid membranes were prepared by waste fibers of mechanical carpets as useful resource of membrane matrix and industrial graphite powder as filler to eliminate Chrysophenine GX from dyeing wastewater. These membranes were expected to be utilized for first stage of hybrid membrane filtration process including (adsorption-ultrafiltration) and nanofiltration in Kashan Textile Company. For scaling of membrane filtration process, fouling mechanism of these membranes were recognized and explained by the use of genetic algorithm, as well. The graphite increased rejection and diminished permeate flux at low concentration but in high concentration, the performance was significantly worsened. Among all hybrid membranes, 18% wt. waste fibers-1% wt. graphite membrane had the best performance and minimum fouling. The maximum pore size of this optimum membrane was ranged from 16.10 to 18.72 nm.

Recent Progress in Patterned Membranes for Membrane-Based Separation Process (분리공정을 위한 패턴화 멤브레인 최근 연구 동향)

  • Aung, Hein Htet;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.170-183
    • /
    • 2021
  • Fouling has continued to be a problem that hinders the effectiveness of membrane properties. To solve this problem of reducing fouling effects on membrane surface properties, different and innovative types of membrane patterning has been proposed. This article reviews on the progress of patterned membranes and their separation process concerning the fouling effects of membranes. The types of separation processes that utilize the maximum effectiveness of the patterned membranes include nanofiltration (NF), reverse osmosis (RO), microfiltration (MF), ultrafiltration (UF), and pervaporation (PV). Using these separation processes have shown and prove to have a major effect on reducing fouling effects, and in addition, they also add beneficial properties to the patterned membranes. Each patterned membrane and their separation processes gave notable results in threshold towards flux, salt rejections, hydrophilicity and much more, but there are also some unsolved cases to be pointed out. In this review, the effects of patterned membrane for separation processes will be discussed.

Surface Characterization of NF membranes for Hardness Removal and Its Implications to Fouling Mechanisms (경도제거용 나노여과막의 표면 특성 분석 및 막오염기작 연구)

  • Ham, Sangwoo;Kim, Youngjin;Kim, Chunghwan;Shon, Hokyong;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.559-567
    • /
    • 2013
  • In recent years, NF (nanofiltration) membrane has been receiving great attention for hardness removal and has begun to replace traditional lime soda ash softening process, particularly in Florida, USA, mainly due to less sludge production and easy operation. This study aimed to provide detailed surface characteristics of various commercial NF membranes by performing sophisticated surface analysis, which would help more fundamentally understand the performance of NF membranes. More specifically, a total of 7 NF membranes from top NF/RO manufacturers in the world were examined for basic performance tests, surface analysis, and fouling potential assessment. The results demonstrated that NF membranes are classified into two groups in terms of surface zeta potential; they are highly negatively charged ones, and neutral and/or less negatively charged ones. Their hydrophobicities, measured by contact angle, varied from hydrophilic to slightly hydrophobic ones. The AFM measurements showed various surface roughness, ranging from 23 nm (smooth) to 162 nm (rough) of average peak height. Lab-scale fouling experiments were performed using feedwater obtained from conventional water treatment plants in the province of Korea, and their results attempted to correlate to surface characteristics of NF membranes. However, unlike typical RO membranes, no clear correlation was found in this study, indicating that fouling mechanisms of NF membrane may be different from those of typical RO membranes, and both cake deposition and pore blocking mechanisms should be considered simultaneously.