• 제목/요약/키워드: nanofibers

검색결과 493건 처리시간 0.026초

저밀도 이광자 광중합 영역을 이용한 30 nm 이하의 패턴제작 (Fabrication of sub-30 nm nanofibers using weakly two-photon induced photopolymerized region)

  • 박상후;임태우;양동열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1249-1253
    • /
    • 2007
  • Experimental studies on the fabrication of sub-30 nm nanofibers using weakly two-photon induced photopolymerized region have been carried out. For the generation of nanofibers inside or outside microstructures, an over-polymerizing method involving a long exposure technique (LET) was proposed. Such nanofibers can find meaningful applications as bio-filters, mixers, and many other uses in diverse research field. A multitude of nanofibers with a notably high resolution (about 22 nm) in two-photon polymerization was achieved using the LET. Furthermore, it was demonstrated that the LET can be employed for the direct fabrication of various embossing patterns by controlling the exposure duration and the interval between voxels. Thin interconnecting networks are formed regularly in the boundary of the over-polymerized region, which allows for the creation of various pattern shapes. Overall of this work, some patterns including nanofibers are fabricated by the LET.

  • PDF

Hot isostatic pressure을 이용한 CN nanofiber의 구조 및 전계방출 특성 (Structure and field emission properties of carbon-nitrogen (CN) nanofibers obtained by hot isostatic pressure)

  • 이양두;;;;남산;이윤희;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.84-87
    • /
    • 2003
  • Carbon-nitrogen (CN) nanofibers have been produced using a water cooled hot isostatic pressure (HIP) apparatus. The CN nanofibers were grown in random with the diameter of about 100-150nm and length over $10{\mu}m$. Emission properties of CN nanofibers were investigated for spacing, between anode and cathode, variation. Then turn-on fields about $1.4V/{\mu}m$. The time reliability and light emission test were carried out for above 100 hours. We suggest that CN nanofibers can be possibly applied to high brightness flat lamp because of low turn-on field and time reliability.

  • PDF

탄화규소 나노섬유의 고온 대기 및 SO2 가스분위기에서의 부식물성 (Characterization of Air and SO2 Gas Corrosion of Silicon Carbide Nanofibers)

  • 김민정;이동복
    • 한국표면공학회지
    • /
    • 제43권1호
    • /
    • pp.36-40
    • /
    • 2010
  • The SiO vapor that was generated from a mixture of Si and $SiO_2$ was reacted at $1350^{\circ}C$ for 2 h under vacuum with carbon nanofibers to produce SiC nanofibers having an average diameter of 100~200 nm. In order to understand the gas corrosion behavior, SiC nanofibers were exposed to air up to $1000^{\circ}C$. SiC oxidized to amorphous $SiO_2$, but its oxidation resistance was inferior unlike bulk SiC, because of high surface area of nanofibers. When SiC nanofibers were exposed to Ar-1% $SO_2$ atmosphere, SiC oxidized to amorphous $SiO_2$, without forming $SiS_2$, owing to the thermodynamic stability of $SiO_2$.

전기방사에 의한 PAN 나노섬유의 제조특성 (Characterization of Polyacrylonitrile Nanofibers by Electrospinning)

  • 장덕례;정은영;김호성
    • 한국재료학회지
    • /
    • 제17권5호
    • /
    • pp.278-282
    • /
    • 2007
  • Polyacrylonitrile nanofibers were fabricated by co-electrospinning technique and were characterized using scanning electron microscopy(SEM). We have evaluated systematically the effects of the important processing parameters affected on the morphology of the formed fibers; voltage, solution concentration and tip to collector distance. PAN nanofibers of about 200 nm${\sim}$2500 nm in diameter were well fabricated at the polymer concentration of 7.5 wt%${\sim}$15 wt%. It has been found that the average diameter of PAN nanofibers increased with increasing the concentration of PAN solution due to the reduction of whipping and splitting for the high viscosity solution. we also found an evidence that the applied voltage is strongly correlated with the distribution of nanofibers and the uniformed size of nanofibers were obtained at electrostatic value of 1 kV/cm.

AAO (Anodized Aluminium Oxide) template 제조 및 이를 이용해 제조한 탄소 및 산화 금속 나노 섬유 물질에 관한 연구 (The Study of Manufacturing the AAO Template and Fabrication of Carbon and Metal Oxide Nanofibers using AAO Template)

  • 김청;박수길
    • 한국표면공학회지
    • /
    • 제49권4호
    • /
    • pp.357-362
    • /
    • 2016
  • In this study, we manufactured the anodized alumina oxide (AAO) template and fabricated the carbon nanofibers and manganese oxide nanofibers using AAO template for application to electrochemical capacitor. Pore diameters of the AAO template were increased from 50 to 90 nm by increasing the acid treatment time after two-step anodizing process. Furthermore nanofibers, which is fabricated by AAO template, showed uniform diameter and micro structure. It is suggested that the surface area is larger than commercial electrode material and it is enhancing the energy density by increasing the specific capacitance.

Preparation of Poly (Vinyl Alcohol) Nanofibers Containing Silver Nanoparticles by Gamma-ray Irradiation

  • Kim, Yun-Hye;Shin, Junwha;Youn, Min-Ho;An, Sung-Jun;Lim, Youn-Mook;Gwon, Hui-Jeong;Nho, Young-Chang
    • 방사선산업학회지
    • /
    • 제2권3호
    • /
    • pp.129-133
    • /
    • 2008
  • PVA nanofibers containing silver nanoparticles were prepared by two methods. The first method was electrospinning of irradiated solution. The prepared $PVA/AgNO_3$ solution was irradiated by gamma-rays. And then the irradiated solution was electrospun. The second method was irradiation of electrospun nanofibers. Nanofibers prepared by electrospinning of unirradiated $PVA/AgNO_3$ solution. The morphology of the nanofibers was observed with a SEM, TEM. When the irradiated $PVA/AgNO_3$ solution were electrospun, the average size of the Ag nanoparticles was increased, but their number was decreased.

나노 섬유를 혼합한 시멘트 페이스트의 미세구조와 강도에 대한 연구 (A Study about the Strength and Microstructure of Hardened Cement Pastes Including Nanofibers)

  • 응유옌 트리;김정중
    • 대한토목학회논문집
    • /
    • 제40권2호
    • /
    • pp.177-182
    • /
    • 2020
  • 본 연구에서는 시멘트 페이스트에 혼합된 나노 섬유가 경화된 시멘트페이스트의 압축강도와 인장강도에 미치는 영향을 연구하였다. 2종류의 나노 섬유를 사용하였다. 나일론 66 나노 섬유와 카본 나노 튜브로 보강된 나일론 66 나노 섬유를 전기방사로 제작하여 시멘트 파우더에 각각 혼합하였다. 물-시멘트비 0.5의 시멘트 페이스트 시편을 제작하고 28일간 양생하였다. 실험 결과, 나노섬유의 혼합이 시멘트 페이스트 시편의 압축강도와 인장강도를 증가시킴을 확인하였다. 나노 섬유의 보강 매카니즘을 확인하기 위해 주사전자현미경(SEM) 분석, 전계방사 투과전자 현미경(FE-TEM) 분석 및 열 중량 분석(TGA)을 수행하여 나노섬유를 포함한 시멘트 페이스트의 미세 구조를 분석하였다.

Preparation and Characterization of Temperature-Sensitive Poly(N-isopropylacrylamide)-g-Poly(L-lactide-co-$\varepsilon$-caprolactone) Nanofibers

  • Jeong, Sung-In;Lee, Young-Moo;Lee, Joo-Hyeon;Shin, Young-Min;Shin, Heung-Soo;Lim, Youn-Mook;Nho, Young-Chang
    • Macromolecular Research
    • /
    • 제16권2호
    • /
    • pp.139-148
    • /
    • 2008
  • Biodegradable and elastic poly(L-lactide-co-$\varepsilon$-caprolactone) (PLCL) was electrospun to prepare nanofibers, and N-isopropylacrylamide (NIPAAm) was then grafted onto their surfaces under aqueous conditions using $^{60}Co-{\gamma}$ irradiation. The graft yield increased with increasing irradiation dose from 5 to 10 kGy and the nanofibers showed a greater graft yield compared with the firms. SEM confirmed that the PLCL nanofibers maintained an interconnected pore structure after grafting with NIPAAm. However, overdoses of irradiation led to the excessive formation of homopolymer gels on the surface of thc PLCL nanofibers. The equilibrium swelling and deswelling ratio of the PNIPAAm-g-PLCL nanofibers (prepared with 10 kGy) was the highest among the samples, which was consistent with the graft yield results. The phase-separation characteristics of PNIPAAm in aqueous conditions conferred a unique temperature-responsive swelling behavior of PNIPAAm-g-PLCL nanofibers, showing the ability to absorb a large amount of water at < $32^{\circ}C$, and abrupt collapse when the temperature was increased to $40^{\circ}C$. In accordance with the temperature-dependent changes in swelling behavior, the release rate of indomethacin and FITC-BSA loaded in PNIPAAm-g-PLCL nanofibers by a diffusion-mediated process was regulated by the change in temperature. Both model drugs demonstrated greater release rate at $40^{\circ}C$ relative to that at $25^{\circ}C$. This approach of the temperature-controlled release of drugs from PNIPAAm-g-PLCL nanofibers using gamma-ray irradiation may be used to design drugs and protein delivery carriers in various biomedical applications.

Characterization of Electrospun Nanofibers of Cellulose Nanowhisker/Polyvinyl Alcohol Composites

  • Cho, Mi-Jung;Park, Byung-Dae;Kadla, John F.
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권2호
    • /
    • pp.71-77
    • /
    • 2012
  • Cellulose nanowhisker (CNW) isolated from hardwood bleached kraft pulp (HW-BKP) using sulfuric acid hydrolysis was suspended in polyvinyl alcohol (PVA) and electrospun into composites nanofibers. Transmission electron microscopy (TEM) revealed the CNW to be rod-like, approximately of $16.1{\pm}4.6$ nm wide and $194{\pm}61$ nm long, providing an aspect ratio of about 12, with a particle size distribution range of $662.2{\pm}301.2$ nm. Uniform and high quality CNW/PVA composite nanofibers were successfully manufactured by the electrospinning method. As the CNW loading increases, the viscosity of CNW/PVA solutions shows a minimum at 1% CNW level which subsequently results in the smallest diameter (193 nm) of electrospun nanofibers. The average diameter of the nanofibers increased up to 284 nm with increasing CNW loading. These results suggest that the electrospinning method provides a great potential of manufacturing consistent and reliable nanofibers from CNW/PVA solution for the formation of scaffolds with potentials in future application.

함산소불소화 효과에 의한 전기방사 활성탄소나노섬유의 $CO_2$ 저장 (Effect of oxyfluorination on activated electrospun carbon nanofibers for $CO_2$ storage)

  • 배병철;김종구;임지선;이영석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.219.2-219.2
    • /
    • 2011
  • The oxyfluorination effects of electrospun carbon nanofibers (OFACFs) were investigated for $CO_2$ storage. Carbon nanofibers were prepared form poly acrylonitrile / N,N-dimethylformamide solution through electrospinning method and heat treatment. Chemical activation of carbon nanofibers were carried out in order to improve the pore structure. And the surface modification of activated carbon nanofibers was conducted by oxyfluorination to improve the $CO_2$ storage on effect of introduced functional groups. The samples were labeled CF (electrospun carbon nanofiber), ACF (activated carbon nanofibers), OFACF-1 ($F_2:O_2$ = 3:7), OFACF-2 ($F_2:O_2$ = 5:5) and OFACF-3 ($F_2:O_2$ = 7:3). The functional group of OFACFs was investigated by x-ray photoelectron spectroscopy analysis. The specific surface area, pore volume and pore size of OFACFs were calculated and pore shape was estimated by the BET equation. Through the adsorption isotherm, the specific surface area and pore volume significantly decreased by oxyfluorination.

  • PDF