• Title/Summary/Keyword: nanodot structure

Search Result 11, Processing Time 0.031 seconds

Fabrication of Ni Nanodot Structure Using Porous Alumina Mask (다공성 알루미나 마스크를 이용한 니켈 나노점 구조 제작)

  • Lim, Suhwan;Kim, Chul Sung;Kouh, Taejoon
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.4
    • /
    • pp.126-129
    • /
    • 2013
  • We have fabricated an ordered Ni nanodot structure using an alumina mask prepared via 2-step anodization technique under phosphoric acid. We have formed a porous structure with average pore size of 279 nm on $2{\mu}m$ thick alumina film and the thermal deposition of thin Ni film though the mask led to the formation of ordered Ni nanodot structure with an average dot size of 293 nm, following the pore structure on the mask. We further investigated the magnetic properties of the nanodot structure by measuring the hysteresis curve at room temperature. When compared to the magnetic properties of a continuous Ni film, we observed the decrease in the squareness and the increase in coercivity along the magnetization easy axis, due to the isolated nanodot structure. Our study suggests that the ordered nanodot structure can be easiy fabricated with thin film deposition technique using anodized alumina mask as a mask.

Two Dimensional Gold Nanodot Arrays Prepared by Using Self-Organized Nanostructure

  • Jung Kyung-Han;Chang Jeong-Soo;Kwon Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.246-250
    • /
    • 2006
  • Highly ordered gold nanodot arrays have been successfully obtained by vacuum evaporation using an anodic aluminum oxide (AAO) as a shadow mask. An AAO mask with the thickness of 300 um was prepared through an anodization process. The structure of the nanodot arrays was studied by a field- emission scanning electron microscope (FE-SEM) equipped with an energy dispersive spectrometer (EDS). A tapping mode atomic force microscope (AFM) was employed for studies of height and phase feature. The nanodot arrays were precisely reproduced corresponding to the hexagonal structure of the AAO mask in a large area. In the gold nanodot arrays, the average diameter of dots is approximately the same as the AAO pore size in the range from 70 um to 80 nm and 100 nm center-to-center spacing. EDS analysis indicated that the gold dots were almost entirely consisted of gold, a highly demanded material.

Soft-Lithographic Fabrication of Ni Nanodots Using Self-Assembled Surface Micelles

  • Seo, Young-Soo;Lee, Jung-Soo;Lee, Kyung-Il;Kim, Tae-Wan
    • Journal of Magnetics
    • /
    • v.13 no.2
    • /
    • pp.53-56
    • /
    • 2008
  • This study proposes a simple nano-patterning process for the fabrication of magnetic nanodot arrays on a large area substrate. Ni nanodots were fabricated on a large area (4 inches in diameter) Si substrate using the soft lithographic technique using self-assembled surface micelles of Polystyrene-block-Poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer formed at the air/water interface as a mask. The hexagonal array of micelles was successfully transferred to a Ni thin film on a Si substrate using the Langmuir-Blodgett technique. After ion-mill dry etching, a magnetic Ni nanodot array with a regular hexagon array structure was obtained. The Ni nanodot array showed in-plane easy axis magnetization and typical soft magnetic properties.

MAGNETIC PROPERTIES OF CoCrPt NANODOTS ARRAY MADE BY PS-PMMA BLOCK COPOLYMER TEMPLATE (블록 공중합체를 이용한 CoCrPt 나노점 배열의 자기적 성질 연구)

  • Jeong, Jong-Ryul;Im, Mi-Young;Shin, Sung-Chul;Park, Dae-Geun;Kwon, Ki-Young;Jung, Hee-Tae;Yang, Seung-Man
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.34-35
    • /
    • 2002
  • CoCrPt alloy films are attracting wide attention for applications to high-density magnetic recording media and hard magnetic layer in spin valve structure due to their high coercivity and strong magnetocrystalline anisotropy. Diblock copolymer templates are one of the most promising candidates for nanoscale patterning otherwise inaccessible by lithographic procedures [1]. In this study, we have investigated magnetic properties of Co$\sub$68/Cr$\sub$18/Pt$\sub$14/ nanodot arrays made by self-assembling polystyrene-block-methyl methacrylate ((PS-b-PMMA), (Mn = 82.5 Kg/mol, with a 1.12 polydispersity)) diblock copolymer. (omitted)

  • PDF

Magnetization Behavior of Co Nanodot Array

  • Chang, Joon-Yeon;Gribkov, B.A.;Kim, Hyung-Jun;Koo, Hyun-Cheol;Han, Suk-Hee;Mironov, V.L.;Fraerman, A.A.
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.17-20
    • /
    • 2007
  • We performed magnetic force microscopy (MFM) observation on array of Co dots in order to understand magnetic state and magnetization behavior of submicron sized Co dots patterned on GaMnAs bridge. MFM observations showed the magnetization reversal and processes of local magnetization of individual ferromagnetic Co nanodots. Magnetic state of Co dots either single domain or vortex is dependent on geometrical size and thickness. Transition from single domain to vortex state can be realized with MFM tip assisted local field. Magnetization reversal process takes place through sequential reversal of individual dots. Localized inhomogeneous magnetic field can be manipulated by controlling magnetic state of individual Co dot in the array structure.

Eco-Friendly Emissive ZnO-Graphene QD for Bluish-White Light-Emitting Diodes

  • Kim, Hong Hee;Son, Dong Ick;Hwang, Do-Kyeong;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.627-627
    • /
    • 2013
  • Recently, most studies concerning inorganic CdSe/ZnS quantum dot (QD)-polymer hybrid LEDs have been concentrated on the structure with multiple layers [1,2]. The QD LEDs used almost CdSe materials for color reproduction such as blue, green and red from the light source until current. However, since Cd is one of six substances banned by the Restriction on Hazardous Substances (RoHS) directive and classified into a hazardous substance for utilization and commercialization as well as for use in life, it was reported that the use of CdSe is not suitable to fabricate a photoelectronic device. In this work, we demonstrate a novel, simple and facile technique for the synthesis of ZnO-graphene quasi-core.shell quantum dots utilizing graphene nanodot in order to overcome Cd material including RoHS materials. Also, We investigate the optical and structural properties of the quantum dots using a number of techniques. In result, At the applied bias 10 V, the device produced bluish-white color of the maximum brightness 1118 cd/$m^2$ with CIE coordinates (0.31, 0.26) at the bias 10 V.

  • PDF

Fabrication of Fe Nanodot Using AAO Prepatterned by Laser Interference Lithography (레이저 간섭 석판술로 전처리된 AAO을 이용한 Fe 나노점 제작)

  • Hwang, H.M.;Kang, J.H.;Lee, S.G.;Lee, J.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.137-140
    • /
    • 2007
  • The ordering of nanopores in AAO has been improved by using laser interference lithography. After growing Fe and Cu on this substrate in vacuum and removing AAO, Fe nanodots are fabricated. The nanopores in AAO and nanodots are ordered in one dimension following the prepatterning. It has been confirmed from the magnetic hysteresis loop that the Fe nanodots have vortex structure and the dipolar interaction is dominant among them.

SiGe Nanostructure Fabrication Using Selective Epitaxial Growth and Self-Assembled Nanotemplates

  • Park, Sang-Joon;Lee, Heung-Soon;Hwang, In-Chan;Son, Jong-Yeog;Kim, Hyung-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.24.2-24.2
    • /
    • 2009
  • Nanostuctures such as nanodot and nanowire have been extensively studied as building blocks for nanoscale devices. However, the direct growth of the nanostuctures at the desired position is one of the most important requirements for realization of the practical devices with high integrity. Self-assembled nanotemplate is one of viable methods to produce highly-ordered nanostructures because it exhibits the highly ordered nanometer-sized pattern without resorting to lithography techniques. And selective epitaxial growth (SEG) can be a proper method for nanostructure fabrication because selective growth on the patterned openings obtained from nanotemplate can be a proper direction to achieve high level of control and reproducibility of nanostructucture fabrication. Especially, SiGe has led to the development of semiconductor devices in which the band structure is varied by the composition and strain distribution, and nanostructures of SiGe has represented new class of devices such nanowire metal-oxide-semiconductor field-effect transistors and photovoltaics. So, in this study, various shaped SiGe nanostructures were selectively grown on Si substrate through ultrahigh vacuum chemical vapor deposition (UHV-CVD) of SiGe on the hexagonally arranged Si openings obtained using nanotemplates. We adopted two types of nanotemplates in this study; anodic aluminum oxide (AAO) and diblock copolymer of PS-b-PMMA. Well ordered and various shaped nanostructure of SiGe, nanodots and nanowire, were fabricated on Si openings by combining SEG of SiGe to self-assembled nanotemplates. Nanostructure fabrication method adopted in this study will open up the easy way to produce the integrated nanoelectronic device arrays using the well ordered nano-building blocks obtained from the combination of SEG and self-assembled nanotemplates.

  • PDF