DOI QR코드

DOI QR Code

Fabrication of Fe Nanodot Using AAO Prepatterned by Laser Interference Lithography

레이저 간섭 석판술로 전처리된 AAO을 이용한 Fe 나노점 제작

  • Hwang, H.M. (Institute of Physics and Applied Physics, Yonsei University) ;
  • Kang, J.H. (Institute of Physics and Applied Physics, Yonsei University) ;
  • Lee, S.G. (Institute of Physics and Applied Physics, Yonsei University) ;
  • Lee, J. (Institute of Physics and Applied Physics, Yonsei University)
  • Published : 2007.06.30

Abstract

The ordering of nanopores in AAO has been improved by using laser interference lithography. After growing Fe and Cu on this substrate in vacuum and removing AAO, Fe nanodots are fabricated. The nanopores in AAO and nanodots are ordered in one dimension following the prepatterning. It has been confirmed from the magnetic hysteresis loop that the Fe nanodots have vortex structure and the dipolar interaction is dominant among them.

레이저 간섭 석판 장비(Laser Interference Lithography; LIL)를 이용하여, Anodic Aluminum Oxide(AAO) 나노기공의 배열을 향상 시켰다. 이후 진공에서 Fe와 Cu를 AAO/Si에 성장하고, AAO를 제거하여 Cu/Fe(20 nm) 나노구조를 제작하였다. AAO의 나노기공과 나노구조는 전처리 과정에서 제작된 PR(photoresist) 나노선을 따라 1차원으로 배열되었다. 자성 나노구조의 자기이력곡선으로부터 이들이 vortex 구조를 가지며, 쌍극자 상호작용이 지배적임을 확인하였다.

Keywords

References

  1. W. Liang, K. T. Tsen, D. K. Ferry, M. C. Wu, C. L. Ho, and W. J. Ho, Appl. Phys. Lett., 83, 1438 (2003) https://doi.org/10.1063/1.1602167
  2. W. I. Park, G.-C. Yi, and H. M. Jang, Appl. Phys. Lett., 79, 2022 (2001)
  3. R. P. Cowburn and M. E. Welland, Science, 287, 1466 (2000) https://doi.org/10.1126/science.287.5457.1466
  4. C. E. Moreau, J. A. Caballero, R. Loloee, W. P. Pratt Jr., and N. O. Birge, J. Appl. Phys., 87, 6316 (2000) https://doi.org/10.1063/1.372691
  5. J. Moritz, B. Dieny, J. P. Nozieres, S. Landis, A. Lebib, and Y. Chen, J. Appl. Phys., 91, 7314 (2002) https://doi.org/10.1063/1.1452260
  6. S. Khizroev, J. A. Bain, and D. Litvinov, Nanotechnology, 13, 619 (2002) https://doi.org/10.1088/0957-4484/13/5/315
  7. A. Pantazi, M. A. Lantz, G. Cherubini, H. Pozidis, and E. Eleftheriou, Nanotechnology, 15, S612 (2004) https://doi.org/10.1088/0957-4484/15/10/019
  8. H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, Appl. Phys. Lett., 84, 3376 (2004) https://doi.org/10.1063/1.1728298
  9. J. Liang, H. Luo, R. Beresford, and J. Xu, Appl. Phys. Lett., 85, 5947 (2004) https://doi.org/10.1063/1.1835534
  10. H. Masuda and K. Fukuda, Science, 268, 1466 (1995) https://doi.org/10.1126/science.268.5216.1466
  11. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, Appl. Phys. Lett., 71, 2770 (1997) https://doi.org/10.1063/1.120128
  12. D. Crousea, Y.-H. Lo, A. E. Miller, and M. Crouse, Appl. Phys. Lett., 76, 49 (2000)
  13. S. G. Lee, S. W. Shin, J. Lee, J. H. Lee, T. G. Kim, and J. H. Song, J. Korean Phys. Soc., 46, 1170 (2005)
  14. H. M. Hwang, S. W. Shin, J. H. Kang, and J. Lee, J. Korean Phys. Soc., 49, 1016 (2006)
  15. C. Y. Liu, A. Datta, and Y. L. Wang, Appl. Phys. Lett., 78, 120 (2001) https://doi.org/10.1063/1.1335543
  16. I. Mikulskas, S. Juodkazis, R. Tomasiumas, and J. G. Dumas, Adv. Mater., 13, 1574 (2001) https://doi.org/10.1002/1521-4095(200110)13:20<1574::AID-ADMA1574>3.0.CO;2-9
  17. H. H. Solak, D. He, W. Li, S. Singh-Glasson, F. Cerrina, B. H. Sohn, X. M. Yang, and N. P. Nealey, Appl. Phys. Lett., 75, 2328 (1999)
  18. E. H. Andersen, 'Fabrication and Electromagnetic Applications of Periodic Nanostructures', Ph.D. Thesis, MIT (1988)
  19. J. Fererra, 'Nanometer-scale placement in electron beam lithogaphy', Ph.D. Thesis, MIT (2000)
  20. E. hecht: Optics (Addison-Wesley, Reading MA, 2002) 4th ed., p.399
  21. J. Mejia-Lopez, D. Altbir, A. H. Romero, X. Batlle, I. V. Roshchin, C.-P. Li, and I. K. Schuller, J. Appl. Phys., 100, 104319 (2006)
  22. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science, 289, 930 (2000) https://doi.org/10.1126/science.289.5481.930