Browse > Article
http://dx.doi.org/10.4283/JMAG.2007.12.1.017

Magnetization Behavior of Co Nanodot Array  

Chang, Joon-Yeon (Center for Spintronics Research, Korea Institute of Science and Technology)
Gribkov, B.A. (Institute for Physics of Microstructures RAS)
Kim, Hyung-Jun (Center for Spintronics Research, Korea Institute of Science and Technology)
Koo, Hyun-Cheol (Center for Spintronics Research, Korea Institute of Science and Technology)
Han, Suk-Hee (Center for Spintronics Research, Korea Institute of Science and Technology)
Mironov, V.L. (Institute for Physics of Microstructures RAS)
Fraerman, A.A. (Institute for Physics of Microstructures RAS)
Publication Information
Abstract
We performed magnetic force microscopy (MFM) observation on array of Co dots in order to understand magnetic state and magnetization behavior of submicron sized Co dots patterned on GaMnAs bridge. MFM observations showed the magnetization reversal and processes of local magnetization of individual ferromagnetic Co nanodots. Magnetic state of Co dots either single domain or vortex is dependent on geometrical size and thickness. Transition from single domain to vortex state can be realized with MFM tip assisted local field. Magnetization reversal process takes place through sequential reversal of individual dots. Localized inhomogeneous magnetic field can be manipulated by controlling magnetic state of individual Co dot in the array structure.
Keywords
magnetic force microscopy; single domain; vortex;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. I. Martin, M. Velez, J. Nogues, and I. K. Shuller, Phys. Rev. Lett. 79, 1929 (1997)
2 A. V. Silhanek, L. Van Look, S. Raedts, R. Jonckheere, and V. V. Moshchalkov, Phys. Rev. B 68, 214504 (2003)
3 A. Y. Aladyshkin, A. A. Fraerman, S. A. Gusev, A. Y. Klimov, Y. N. Nozdrin, G. L. Pakhomov, V. V. Rogov, and S. N. Vdovichev, J. Magn. Magn. Mater. 258-259, 406 (2003)
4 S. N. Vdovichev, B. A. Gribkov, S. A. Gusev, E. Il'ichev, Yu. N. Nozdrin, G. L. Pakhomov, A. V. Samokhvalov, R. Stolz, and A. A. Fraerman, J. Magn. Magn. Mater. 300, 202 (2006)
5 http://math.nist.gov/oommf
6 A. A. Fraerman and M. V. Sapozhnikov, Phys. Rev. B 65, 184433 (2002)
7 I. L. Prejbeanu, N. Natali, L. D. Buda, U. Ebels, A. Lebib, Y. Chen, and K. Ounadjela, J. Appl. Phys. 91, 7343 (2002)
8 S. N. Vdovichev, B. A. Gribkov, S. A. Gusev, E. Il'ichev, A. Yu. Klimov, Yu. N. Nozdrin, G. L. Pakhomov, V. V. Rogov, R. Stolz, and A. A. Fraerman, JETP Letters 80, 651 (2004)
9 M. Berciu, and B. Janko. Phys. Rev. Lett. 90, 246804 (2003)
10 J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, J. Magn. Magn. Mat. 256, 449 (2003)   DOI   ScienceOn
11 R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, and D. M. Tricker, Phys. Rev. Lett. 83, 1042 (1999)   DOI
12 J. Chang, A. A. Fraerman, S. H. Han, H. J. Kim, S. A. Gusev, and V. L. Mironov, Journal of Magnetics 10, 58 (2005)   DOI   ScienceOn
13 A. Fernandez, and C. J. Cerjan, J. Appl. Phys. 87, 1395 (2000)
14 T. Okuno, K. Shigeto, T. Ono, K. Mibu, and T. Shinjo, J. Magn. Magn. Mater. 240, 1 (2002)
15 A. A. Fraerman, L. Belova, B. A. Gribkov, S. A. Gusev, A. Yu. Klimov, V. L. Mironov, D. S. Nikitushkin, G. L. Pakhomov, K. V. Rao, V. B. Shevtsov, M. A. Silaev, and S. N. Vdovichev, Phys. Low - Dim. Struct. # 1/2, 35 (2004)
16 Y. Otani, B. Pannetier, J. P. Nozieres, and D. Givord, J. Magn. Magn. Mater. 126, 622 (1993)
17 O. Geoffroy, D. Givord, Y. Otany, et al., J. Magn. Magn. Mater. 121, 223 (1993)