• Title/Summary/Keyword: nanodot arrays

Search Result 17, Processing Time 0.061 seconds

Two Dimensional Gold Nanodot Arrays Prepared by Using Self-Organized Nanostructure

  • Jung Kyung-Han;Chang Jeong-Soo;Kwon Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.246-250
    • /
    • 2006
  • Highly ordered gold nanodot arrays have been successfully obtained by vacuum evaporation using an anodic aluminum oxide (AAO) as a shadow mask. An AAO mask with the thickness of 300 um was prepared through an anodization process. The structure of the nanodot arrays was studied by a field- emission scanning electron microscope (FE-SEM) equipped with an energy dispersive spectrometer (EDS). A tapping mode atomic force microscope (AFM) was employed for studies of height and phase feature. The nanodot arrays were precisely reproduced corresponding to the hexagonal structure of the AAO mask in a large area. In the gold nanodot arrays, the average diameter of dots is approximately the same as the AAO pore size in the range from 70 um to 80 nm and 100 nm center-to-center spacing. EDS analysis indicated that the gold dots were almost entirely consisted of gold, a highly demanded material.

Fabrication of Nanodot Arrays Via Pulsed Laser Deposition Technique Using (PS-b-PMMA) Diblock Copolymer and Anodic Aluminum Oxide Templates (고분자 공중합체와 알루미늄 양극 산화막 템플레이트를 이용한 나노점 배열 형성)

  • Park Sung-Chan;Bae Chang-Hyun;Park Seung-Min;Ha Joeng-Sook
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.427-433
    • /
    • 2006
  • We have fabricated nanodot arrays by using phase separated (PS- b- PMMA) diblock copolymer film and anodic aluminum oxide (AAO) membrane as templates with hexagonal arrays of cylindrical microdomains perpendicular to the substrate. Pulsed laser deposition technique was used to deposit various kinds of materials including Ag, Ni, ZnO, Si:Er, and Co/Pt onto Si substrates. The size and separation of nanodots correspond to those of the templates used, The density of nanodots was estimated to be $6{\times}10^{11}/cm^2$ and $1{\times}10^{10}/cm^2$ when the diblock copolymer and AAO were used, respectively. In particular, the optical properties of ZnO and Si: Er nanodot arrays were investigated and the strong photoluminescence at 380 nm and $1.54{\mu}m$ was observed from ZnO and Si:Er nanodot arrays, respectively.

Magnetic Force Microscopy (MFM) Study of Remagnetization Effects in Patterned Ferromagnetic Nanodots

  • Chang, Joon-Yeon;Fraerman A. A.;Han, Suk-Hee;Kim, Hi-Jung;Gusev S. A.;Mironov V. L.
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.58-62
    • /
    • 2005
  • Periodic magnetic nanodot arrays were successfully produced on glass substrates by interference laser lithography and electron beam lithography methods. Magnetic force microscopy (MFM) observation was carried out on fabricated nanodot arrays. MFM tip induced magnetization effects were clearly observed in ferromagnetic elliptical nanodots varying in material and aspect ratio. Fe-Cr dots with a high aspect ratio show reversible switching of the single domain magnetization state. At the same time, Co nanomagnets with a low aspect ratio exhibit tip induced transitions between the single domain and the vortex state of magnetization. The simple nanolithography is potentially an efficient method for fabrication of patterned magnetic arrays.

Etch Characteristics of NbOx Nanopillar Mask for the Formation of Si Nanodot Arrays (Si Nanodot 배열의 형성을 위한 NbOx 나노기둥 마스크의 식각 특성)

  • Park, Ik Hyun;Lee, Jang Woo;Chung, Chee Won
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.327-330
    • /
    • 2006
  • We investigated the usefulness of $NbO_{x}$ nanopillars as an etching mask of dry etching for the formation of Si nanodot arrays. The $NbO_{x}$ nanopillar arrays were prepared by the anodic aluminum oxidation process of Al and Nb thin films. The etch rate and etch profile of $NbO_{x}$ nanopillar arrays were examined by varying the experimental conditions such as the concentration of etch gas, coil rf power, and dc bias voltage in the reactive ion etch system using the inductively coupled plasma. As the concentration of $Cl_{2}$ gas increased, the etch rate of $NbO_{x}$nanopillars decreased. With increasing coil rf power and dc bias voltage, the etch rates were found to increase. The etch characteristics and etch mechanism of $NbO_{x}$ nanopillars were investigated by varying the etch time under the selected etch conditions.

Soft-Lithographic Fabrication of Ni Nanodots Using Self-Assembled Surface Micelles

  • Seo, Young-Soo;Lee, Jung-Soo;Lee, Kyung-Il;Kim, Tae-Wan
    • Journal of Magnetics
    • /
    • v.13 no.2
    • /
    • pp.53-56
    • /
    • 2008
  • This study proposes a simple nano-patterning process for the fabrication of magnetic nanodot arrays on a large area substrate. Ni nanodots were fabricated on a large area (4 inches in diameter) Si substrate using the soft lithographic technique using self-assembled surface micelles of Polystyrene-block-Poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer formed at the air/water interface as a mask. The hexagonal array of micelles was successfully transferred to a Ni thin film on a Si substrate using the Langmuir-Blodgett technique. After ion-mill dry etching, a magnetic Ni nanodot array with a regular hexagon array structure was obtained. The Ni nanodot array showed in-plane easy axis magnetization and typical soft magnetic properties.

Self- and Artificially-Controlled ZnO Nanostructures by MOCVD (MOCVD을 이용하여 자발적 및 인위적으로 제어된 산화아연 나노구조)

  • Kim, Sang-Woo;Fujita, Shizuo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.9-10
    • /
    • 2005
  • We report on the fabrication and characterization of self- and artificially-controlled ZnO nanostructures have been investigated to establish nanostructure blocks for ZnO-based nanoscale device application. Systematic realization of self- and artificially-controlled ZnO nanostructures on $SiO_2/Si$ substrates was proposed and successfully demonstrated utilizing metalorganic chemical vapor deposition (MOCVD) in addition with a focused ion beam (FIB) technique. Widely well-aligned two-dimensional ZnO nanodot arrays ($4{\sim}10^4$ nanodots of 130-nm diameter and 9-nm height over $150{\sim}150{\mu}m^2$ with a period of 750 nm) have been realized by MOCVD on $SiO_2/Si$ substrates patterned by FIB. A low-magnification FIB nanopatterning mode allowed the periodical nanopatterning of the substrates over a large area in a short processing time. Ga atoms incorporated into the surface areas of FIB-patterned nanoholes during FIB engraving were found to play an important role in the artificial control of ZnO, resulting in the production of ZnO nanodot arrays on the FIB-nanopatterned areas. The nanodots evolved into dot clusters and rods with increasing MOCVD growth time.

  • PDF