Browse > Article
http://dx.doi.org/10.4283/JMAG.2005.10.2.058

Magnetic Force Microscopy (MFM) Study of Remagnetization Effects in Patterned Ferromagnetic Nanodots  

Chang, Joon-Yeon (Future Technology Research Division, Korea Institute of Science and Technology)
Fraerman A. A. (Institute for Physics of microstructures RAS)
Han, Suk-Hee (Future Technology Research Division, Korea Institute of Science and Technology)
Kim, Hi-Jung (Future Technology Research Division, Korea Institute of Science and Technology)
Gusev S. A. (Institute for Physics of microstructures RAS)
Mironov V. L. (Institute for Physics of microstructures RAS)
Publication Information
Abstract
Periodic magnetic nanodot arrays were successfully produced on glass substrates by interference laser lithography and electron beam lithography methods. Magnetic force microscopy (MFM) observation was carried out on fabricated nanodot arrays. MFM tip induced magnetization effects were clearly observed in ferromagnetic elliptical nanodots varying in material and aspect ratio. Fe-Cr dots with a high aspect ratio show reversible switching of the single domain magnetization state. At the same time, Co nanomagnets with a low aspect ratio exhibit tip induced transitions between the single domain and the vortex state of magnetization. The simple nanolithography is potentially an efficient method for fabrication of patterned magnetic arrays.
Keywords
nanodot; magnetic force microscopy; remagnetization; domain; lithography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. I. Polushkin, B. A. Gribkov, and V. L. Mironov, Book of abstracts international conference 'Micro- and nann electronics-2003', Zvenigorod, October 6-10, 2003, p. O1-21
2 http://math.nist.gov/oommf
3 A. Fernandez, and C. J. Cerjan, J. Appl. Phys. 87, 3, 1395 (2000)
4 T. Okuno, K. Shigeto, T. Ono, K. Mibu, and J. Shinjo, J. Magn. Magn. Mater. 240, (2002)
5 B. D. Terris. L. Folks, D. Weller, J. E. E. Baglin, A. J. Kellock, H. Rothuizen, and P. Vettiger, Appl. Phys. Lett. 75, 403 (1999)   DOI
6 S. Y. Chou, M. Wei, P. R. Krauss, and P. B. Fisher, J. Vac. Sci. Technol. B 12, 3695 (1994)   DOI
7 T. A. Savas, M. Farhoud, H. I. Smith, M. Hwang, and C. A. Ross, J. Appl. Phys. 85, 6160 (1999)
8 A. Fernandes, P. J. Bedrossian, S. L. Baker, S. P. Vernon, and D. R. Kania, IEEE Trans. Magn. 32, 4472 (1996)
9 M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polush­kin, and N. N. Salashchenko, Appl. Phys. Lett. 79, 2606 (2001)   DOI   ScienceOn
10 M. Kleiber, F. Kummerlen, M. Lohndorf, A. Wadas, D. Weiss, R. Wiesendanger, Phys. Rev. B 58, 5563 (2002)
11 A. A. Fraerman, S. A. Gusev, L. A. Mazo, I. M. Nefedov, Yu. N. Nozdrin, I. R. Karetnikova, M. V. Sapozhnikov, I. A. Shereshevsky, and L. V. Sukchodoev, Phys. Rev. B 65, 064424-1 (2002)
12 X. Zhu, P. Grutter, V. Metlushko, and B. Ilic, J. Appl. Phys. 91, 7340 (2002)
13 X. Zhu, P. Grutter, V. Metlushko, and B. Ilic, Phys. Rev. B 66, 024423 (2002)
14 A. Fernandez, M. R. Gibbons, M. R. Wall, and C. J. Cer­jan, J. Magn. Magn. Mater. 190, 71 (1998)