• Title/Summary/Keyword: nanocomposite films

Search Result 161, Processing Time 0.029 seconds

Comparison of Photoelectrode Properties Between $TiO_2$ Thin films Doped with Tantalum and Dispersed with Nanosize Gold (탄탈륨 도핑 및 나노사이즈의 금입자분산된 $TiO_2$ 박막에서의 광전극 특성 비교)

  • Yoon, Jong-Won;Jung, Kyung-Han;Koshizaki, Naoto;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.861-864
    • /
    • 2004
  • 본 연구에서는 Ta이 도핑된 $TiO_2$$Au/TiO_2$ nanocomposite 박막을 co-sputtering법으로 제작하였다. Ta-doped $TiO_2$ 박막은 금흥석(rutile)에서 아나타제 상으로 변하는 구조를 유도하는 고용체를 형성했다. $Au/TiO_2$ nanocomposite film의 경우에는, 지름이 약 15 nm인 Au particles들이 $TiO_2$ matrix에 균질하게 분포되었다. Ta가 도핑된 $TiO_2$ 전극과 $Au/TiO_2$ 나노 콤포사이트 전극의 anodic photocurrents가 UV뿐만 아니라 가시광선 영역에서도 관찰되었다. Ta이 도핑된 $TiO_2$ 전극과 $Au/TiO_2$ 나노 콤포사이트 사이의 가시광선 영역에서 photoresponse는 계면 상태로 부터의 bandgap의 감소와 전자의 photoexcitation 때문이다.

  • PDF

Water-Repellent Macroporous Carbon Nanotube/Elastomer Nanocomposites by Self-Organized Aqueous Droplets

  • Lim, Bo-Kyung;Lee, Sun-Hwa;Park, Ji-Sun;Kim, Sang-Ouk
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.666-671
    • /
    • 2009
  • Water repellent elastomeric surfaces were fabricated successfully on SBS/MWNT nanocomposites films using the breath figure method and subsequent thermal treatment. The uniformly dispersed CNTs were found to play significant roles in tuning the size and ordering of the macroporous morphology at the nanocomposite surface as well as enhancing the mechanical properties of nanocomposites. In particular, the CNTs dispersed in a nanocomposite solution retarded the coarsening process of aqueous droplets during the breath figure process and decreased the pore size in the finally fabricated film. The water contact angle measurement showed that the double-scale structure comprised of self-organized macropores and surface the roughness induced by a thermal treatment produced a highly water-repellent nanocomposite surface.

A Study on the Fabrication and Electrical Characteristics of Polyimide Nanocomposite as an Insulator between Turns of Superconducting Transformer (초전도 변압기용 turn간 절연재료용 Polyimide Nanocomposite의 제조 및 전기적 특성 연구)

  • 박영욱;이동성;김상현
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.105-108
    • /
    • 2002
  • Polyimide-epoxysilane (coupling agent) composites were reacted with oligomeric PDMS, a condensation product of difunctional silane, by a sol-gel process and were then dried into films. And then, the surface, mechanical, and electric properties were measured. The study showed that PDMS existed in the polyimlde matrix by the use of FT-IR. In the mechanical properties, the maximum elongation and toughness was increased in the polyimide with silane-groups. But the maximum tensile strength was slightly decreased. And the intensive dispersion of the silane-groups on the surface of polyimide was ascertained through XPS measurement. In the electric properties, AC break down voltage was increased by increasing the amount of difunctional silane. This experiment showed that PDMS added polyimide had better mechanical and electric properties than classical materials.

  • PDF

Polyvinyl Alcohol (PVA) Films Reinforced with Acid Hydrolyzed Cellulose

  • Lee, Sun-Young;Mohan, D.Jagan;Chun, Sang-Jin;Kang, In-Aeh;Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.341-346
    • /
    • 2008
  • Cellulose nanofibers from microfibril cellulose (MFC) was prepared by hydrobromic acid (HBr) treatment at different concentrations. Polyvinyl alcohol (PVA) composite films at various loading level of nanofibers were manufactured by a film casting method. The analysis of degree of polymerization (DP), crystallinity ($X_c$) and molecular weight ($M_w$) of cellulose after acid treatment was conducted. The mechanical and thermal properties of the cellulose nanofibers reinforced PVA films were characterized using tensile tests and thermogravimetric analysis (TGA). The DP and $M_w$ of MFC by HBr hydrolysis considerably decreased, but $X_c$ showed no significant change. After acid hydrolysis, the diameter of cellulose nanofibers was in the range of 100 to 200 nm. The thermal stability of the films was steadily improved with the increase of nanofiber loading. There was a significant increase in the tensile strength of PVA composite films with the increase in MFC loading. Finally, 5 wt.% nanofiber loading exhibited the highest tensile strength and thermal stability of PVA composite films.

Ultra High Molecular Weight Polyethylene Nanocomposite Films : Thermomechanical Property, Morphology, and Gas Permeability (초고분자량 폴리에틸렌 나노복합체 필름 : 열적-기계적 성질, 모폴로지 및 기체 투과도)

  • Jung, Min-Hye;Kim, Jeong-Cheol;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.428-435
    • /
    • 2007
  • The thermomechanical property, morphology, and gas permeability of nanocomposites of ultra high molecular weight polyethylene (UHMWPE) with two different organoclays are compared. Hexamethylene benzimidazole-mica ($C_{16}BIMD-Mica$) and Cloisite 25A were used as reinforcing fillers in the formation of UHMWPE hybrid films. Dispersions of organoclays with UHMWPE were carried out by using the solution intercalation method at different organoclay contents to produce nano-scale composites. Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermomechanical property and gas barrier of the UHMWPE hybrid films. In general, Cloisite 25A is more effective than $C_{16}BIMD-Mica$ in increasing both the thermomechanical property and the gas barrier in a UHMWPE matrix.

Preparation and Water Vapor Barrier Properties of PET/Nanohybrid PI Films (폴리에스테르/폴리이미드 나노복합필름의 제조 및 수분차단 특성)

  • Han, Seung San;Kim, Yong Seok;Won, Jong Chan;Lee, Jae Heung;Choi, Kil-Yeong
    • Journal of Adhesion and Interface
    • /
    • v.5 no.1
    • /
    • pp.29-35
    • /
    • 2004
  • We have prepared polyster/nanQhybridized polyimide films in the range of 1~9 wt% of organophilic synthetic layered silicate (STN). Firstly, poly(amic acid)/STN nanocomposite solutions were prepared via solution blending method in DMAc or THF/MeOH solution, and then cast on the polyester film followed by imidization reaction, thermal and chemical method repestively. XRD and TEM experiment showed that the STN was fully exfoliated through the polyimide matrix. Surface morphologies of nanohybridized polyimide films were characterized by AFM and thermal, mechanical properties were also confirmed by TGA, DMA and UTM each. And also, the water vapor permeabilities highly depended on the content of STN. The sample from chemical imidization route and THF/MeOH solvent system showed better water vapor barrier properties than thermal one and DMAc system.

  • PDF

Characterization of Nanocomposite Ti-Si-N Films Prepared by a Hybrid Deposition System of A If and Sputtering Techniques (하이브리드 증착 시스템을 이용한 나노복합체 Ti-Si-N 박막의 특성 연구)

  • 윤순영;최성룡;이미혜;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.122-127
    • /
    • 2003
  • Ti - Si - N hard films were deposited on SKD11 steel substrates by a hybrid deposition system, where TiN was deposited by AIP method while Si was incorporated by sputtering one. The microstructure of Ti-Si-N films was revealed to be a composite of TiN crystallites and amorphous Si3N4 by instrumental analyses. The highest hardness value of about 45 Gpa was obtained at the Si content of around 7.7 at.%. With increase of Si content, the size of TiN crystallites was reduced and their distribution was changed from aligned to randomly orientated states. Surface roughness of Ti-Si-N film also decreased with increase of Si content.

Preparation and Characterization of Polyimide/Carbon-Nanotube Composites

  • Kim, Bong-Sup;Bae, Sang-Hoon;Park, Young-Hwan;Kim, Ji-Heung
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.357-362
    • /
    • 2007
  • Polyimide/carbon nanotube (CNT) composite films, for potential use in high performance microelectronics and aerospace applications, were prepared by mixing a polyisoimide (PII) solution and a CNT suspension in NMP, followed by casting, evaporation and thermal imidization. The CNTs were modified by a nitric acid treatment to improve the thermal and electrical properties, as well as to provide good dispersion of the CNTs in a polymer matrix. The formation of functional groups on the modified CNT was confirmed by Raman spectroscopy. Scanning electron microscopy revealed the modified CNTs to be well dispersed in the polyimide matrix, with a uniform diameter of ca. 50 nm. The thermal stability of the films containing the CNTs was improved due to the enhanced interfacial interaction and good dispersion between the polyimide matrix and modified CNTs. In addition, the thermal expansion coefficient of the composites films was slightly decreased, but the dielectric constants increased linearly with increasing CNT content.

Electroactive Conjugated Polymer / Magnetic Functional Reduced Graphene Oxide for Highly Capacitive Pseudocapacitors: Electrosynthesis, Physioelectrochemical and DFT Investigation

  • Ehsani, A.;Safari, R.;Yazdanpanah, H.;Kowsari, E.;Shiri, H. Mohammad
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.301-307
    • /
    • 2018
  • The current study fabricated magnetic functional reduced graphene oxide (MFRGO) by relying on ${FeCl_4}^-$ magnetic anion confined to cationic 1-methyl imidazolium. Furthermore, for improving the electrochemical performance of conductive polymer, hybrid poly ortho aminophenol (POAP)/ MFRGO films have then been fabricated by POAP electropolymerization in the presence of MFRGO nanorods as active electrodes for electrochemical supercapacitors. Surface and electrochemical analyses have been used for characterization of MFRGO and POAP/ MFRGO composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. Prepared composite film exhibited a significantly high specific capacity, high rate capability and excellent cycling stability (capacitance retention of ~91% even after 1000 cycles). These results suggest that electrosynthesized composite films are a promising electrode material for energy storage applications in high-performance pseudocapacitors.

Study of the optical switching properties in waveguide type Au/$SiO_2$ nanocomposite film using prism coupler (프리즘 커플러를 이용한 도파로형 Au/$SiO_2$ 나노 혼합박막의 광 스위칭 특성 연구)

  • Cho, Sung-Hun;Lee, Soon-Il;Lee, Taek-Sung;Kim, Won-Mok;Lee, Kyeong-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.76-76
    • /
    • 2008
  • The resonance properties due to the surface plasmon(SP) excitation of metal nanoparticles make the nanocomposite films promising for various applications such as optical switching devices. In spite of the well-known ultra-sensitive operation of optical switches based on a guided wave, the application of nanocomposite film(NC) has inherent limitation originating from the excessive optical loss related with the surface plasmon resonance(SPR). In this study, we addressed this problem and present the experimental and theoretical analysis on the pump-probe optical switching in prism-coupled Au(1 vol.%):$SiO_2$ nanocomposite waveguide film. The guided mode was successfully generated using a near infrared probe beam of 1550 nm and modulated with an external pump beam of 532 nm close to the SPR wavelength. We extend our approach to ultra-fast operation using a pulsed laser with 5 ns pulse width. To improve the switching speed through the reduction in thermal loading effect accompanied by the resonant absorption of pump beam light, we adopted a metallic film as a coupling layer instead of low-index dielectric layer between the high-index SF10 prism and NC slab waveguide. We observed great enhancement in switching speed for the case of using metallic coupling layer, and founded a distinct difference in origin of optical nonlinearities induced during switching operation using cw and ns laser.

  • PDF