• 제목/요약/키워드: nano-zeolite

검색결과 46건 처리시간 0.021초

Adsorption and electro-Fenton processes over FeZSM-5 nano-zeolite for tetracycline removal from wastewater

  • Niaei, Hadi Adel;Rostamizadeh, Mohammad
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.173-181
    • /
    • 2020
  • Adsorption and heterogeneous electro-Fenton process using iron-loaded ZSM-5 nano-zeolite were investigated for the removal of Tetracycline (TC) from wastewater. The nano-zeolite was synthesized hydrothermally and modified through impregnation. The zeolite was characterized by XRD, FT-IR, FE-SEM, N2 adsorption-desorption, and NH3-TPD techniques. The equilibrium data were best represented by the Freundlich isotherm. The pseudo-second-order kinetic model was the most accurate model for the adsorption of TC on the modified nano-zeolite. The effect of parameters such as pH of solution and current density were investigated for the heterogeneous electro-Fenton process. The results showed that the current density of 150 mA and pH of 3 led to the highest TC removal (90.35%) at 50 min. The nano-zeolite showed the appropriate reusability. Furthermore, the developed kinetic model was in good agreement with the removal data of TC through the electro-Fenton process.

$TiO_2$-Encapsulated EFAL-Removed Zeolite Y as a New Photocatalyst for Photodegradation of Azo Dyes in Aqueous Solution

  • 조원재;윤숙자;윤민중
    • Journal of Photoscience
    • /
    • 제12권1호
    • /
    • pp.17-23
    • /
    • 2005
  • Application of a new photocatalyst has been attempted to improve the efficiency and rates of photocatalytic degradation of azo dyes by using a model dye such as Methyl Orange. As a new photocatalyst, $TiO_2$ encapsulated EFAL-removed zeolite Y ($TiO_2$ /EFAL-removed zeolite Y) has been synthesized by ion-exchange in the mixture of EFAL-removed zeolite Y with 0.05 M aqueous [$(NH_4)_2 TiO(C_2O_4)_2.H_2O$] [$TiO(C_2O_4)_2.H_2O$]. This new photocatalyst has been characterized by measuring XRD, IR and reflectance absorption spectra as well as ICP analysis, and it was found that the framework structure of $TiO_2$ /EFAL-removed zeolite Y is not changed by removing the extra-framework aluminum (EFAL) from the normal zeolite Y and the $TiO_2$ inside the photocatalyst exists in the form of $(TiO^{2+})_n$ nanoclusters. Based on the ICP analysis, the Si/Al ratio of the $TiO_2$ /EFAL-removed zeolite Y and the weight of $TiO_2$ were determined to be 23 and 0.061g in 1.0g photocatalyst, respectively. It was also found that adsorption of the azo dye in the $TiO_2$ /EFAL-removed zeolite is very effective (about 80 % of the substrate used). This efficient adsorption contributes to the synergistic photocatalytic activities of the $TiO_2$ /EFAL-removed zeolite by minimizing the required flux diffusion of the substrate. Thus, the photocatalytic reduction of methyl orange (MO) was found to be 8 times more effective in the presence of $TiO_2$ /EFAL-removed zeolite Y than in the presence of $TiO_2$ /normal zeolite Y. Furthermore, the photocatalytic reduction of MO by using 1.0 g of the $TiO_2$ /EFAL-removed zeolite Y containing 0.061g of $TiO_2$ is much faster than that carried out by using 1.0 g of Degussa P-25.

  • PDF

Removal of Na+ from Ionic Liquids by Zeolite for High Quality Electrolyte Manufacture

  • Cho, Won-Je;Seo, Yongseong;Jung, Soon Jae;Lee, Won Gil;Kim, Byung Chul;Mathieson, Grant;Yu, Kook-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1693-1697
    • /
    • 2013
  • This study develops a novel method to remove the free cations created during the synthesis of ionic liquid. The cations are removed from the ionic liquid by size-selective adsorption onto chemically surface-modified Zeolite. The porous crystal nano-structure of Zeolite has several electron-rich Al sites to attract cations. While large cations of an ionic liquid cannot access the Zeolite nano-structure, small cations like $Na^+$ have ready access and are adsorbed. This study confirms that: $Na^+$ can be removed from ionic liquid effectively using Zeolite; and, in contrast to the conventional and extensively applied ion exchange resin method or solvent extraction methods, this can be done without changing the nature of the ionic liquid.

ZnO 나노결정을 담지한 TMA-A 제올라이트의 특성분석 (Characterization of TMA-A zeolite incorporated by ZnO nanocrystals)

  • 이석주;임창성;김익진
    • 분석과학
    • /
    • 제21권1호
    • /
    • pp.58-63
    • /
    • 2008
  • 수열합성법으로 합성 제조한 TMA-A 제올라이트 내부에 이온교환법을 이용하여 나노 사이즈의 ZnO 결정을 성공적으로 담지하였다. TMA-A 제올라이트의 최적 합성 조성비로는 $Al(i-pro)_3$ : 2.2 TEOS : 2.4 TMAOH : 0.3 NaOH : 200 $H_2O$로 된 용액이었다. ZnO를 담지시킨 TMA-A 제올라이트의 합성을 위하여 0.3g의TMA-A 제올라이트와 5몰의 $ZnCl_2$ 용액을 사용하였다. ZnO 결정를 담지시킨 TMA-A 제올라이트의결정화 과정을 X-ray diffraction (XRD)를 이용하여 분석하였다. 담지된 나노 크기의 ZnO결정과 TMA-A 제올라이트의 결정성을 투과전자현미경과 고배율 투과전자현미경으로 평가하였다. 담지된 ZnO 나노 결정의 크기는 3~5 nm이었으며, 합성된 TMA-A 제올라이트의 크기는 60~100 nm 이었다. FT-IR분석으로 열처리 전 및 열처리 후 ZnO결정를 담지시킨 TMA-A 제올라이트의 결합구조를 확인하였으며, ZnO 및 TMA-A 제올라이트의 흡수 스펙트럼을 비교 평가하였다. 또한, 자외선분광기의 측정에서, ZnO결정를 담지한 TMA-A 제올라이트가 330~260 nm과 260~230 nm 두 파장의 범위에서 형광학적인 특성을 나타내었다.

13X 제올라이트 흡착제 충진에 의한 Na형 Faujasite 제올라이트 분리막의 $CO_2/N_2$ 선택도 및 $CO_2$ 투과도 동시 증가 현상 (A Simultaneous Improvement in $CO_2$ Flux and $CO_2/N_2$ Separation Factor of Sodium-type FAU Zeolite Membranes through 13X Zeolite Beads Embedding)

  • 조철희;여정구;안영수;한문희;문종호;이창하
    • 멤브레인
    • /
    • 제17권3호
    • /
    • pp.269-275
    • /
    • 2007
  • 분리층 두께가 5${\mu}m$이며 Si/Al 몰비가 1.5인 Na형 faujasite 제올라이트 분리막을 이차성장 공정에 의하여 제조하였고, 투과부에 13X 제올라이트 흡착제 충진 전후의 진공모드에서의 $CO_2/N_2$ 분리거동을 $CO_2/N_2$ 몰비가 1인 혼합기체에 대하여 $30^{\circ}C$에서 평가하였다. 충진된 13X 제올라이트 흡착제는 $CO_2$ 투과도와 $CO_2/N_2$ 선택도를 동시에 증진시켰다. 이 현상은 13X 제올라이트 흡착제 충진이 다공성 $\alpha$-알루미나 지지체의 기공채널을 통한 $CO_2$ 탈출을 증진시킴으로써 faujasite 제올라이트/$\alpha$-알루미나 상계면에서의 $CO_2$ 탈착을 증진시켰기 때문으로 설명되었다. 본 논문으로부터 흡착제와 분리막의 혼성화는 일반적으로 보여지는 선택도와 투과도의 역비례 관계를 획기적으로 개선할 방법임이 확인되었다.

Nonlinear Optical Zeolite Films for Second and Third Harmonic Generation

  • Kim, Hyun-Sung;Pham, Tung Thanh;Yoon, Kyung-Byung
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1443-1454
    • /
    • 2011
  • Methods to prepare novel second-order nonlinear optical (2O-NLO) materials composed of all-silica zeolite (silicalite-1) and a series of 2O-NLO molecules having high second order hyperpolarizability constants (${\beta}$ values) are reviewed. These methods include the development of novel methods to incorporate a series of hemicyanine (HC) molecules into the channels of silicaite-1 films in uniform orientations. The first method is to incorporate HC molecules tethered with long alkyl chains (octadecyl or longer) into the silicalite-1 channels with the long alkyl chain side first through the hydrophobic-hydrophobic interaction between the long alky chains and the silicalite-1 channels. The second method is to incorporate the HC molecule tethered with a medium length alkyl chain (nonyl) into the silicalite-1 channels with the medium length alkyl chain side first through hydrophobic-hydrophobic interaction between the medium length alky chain in the photoexcited state and the silicalite-1 channels. The third method is to incorporate the HC molecule tethered with propionic acid into the silicalite-1 channels with the propionic acid side last mediated by a tetrabultylammonium cation ion-paired to the propionate unit. A method to prepare a novel third-order nonlinear optical (3O-NLO) material composed of zeolite-Y and PbS or PbSe quantum dots is also reviewed. This Account thus describes a promising new direction to which the search for highly sensitive 2O-NLO and 3O-NLO materials has to be conducted and a new direction to which zeolite research and applications have to be expanded.

Desalting enhancement for blend polyethersulfone/polyacrylonitrile membranes using nano-zeolite A

  • Mansor, Eman S.;Jamil, Tarek S.;Abdallah, Heba;Youssef, H.F.;Shaban, Ahmed M.;Souaya, Eglal R.
    • Membrane and Water Treatment
    • /
    • 제10권6호
    • /
    • pp.451-460
    • /
    • 2019
  • Thin film composite membranes incorporated with nano-sized hydrophilic zeolite -A were successfully prepared via interfacial polymerization (IP) on porous blend PES/PAN support for water desalination. The thin film nanocomposite membranes were characterized by SEM, contact angle and performance test with 7000 ppm NaCl solution at 7bar. The results showed that the optimum zeolite loading amount was determined to be 0.1wt% with permeate flux 29LMH.NaCl rejection was improved from 69% to 92% compared to the pristine polyamide membrane where the modified PA surface was more selective than that of the pristine PA. In addition, there was no significant change in the permeate flux of the thin film nanocomposite membrane compared with that of the pristine PA in spite of the formation of the dense polyamide layer. The stability of the polyamide layer was investigated for 15 days and the optimized membrane presented the highest durability and stability.

Preparation and Characterization of Sulfated TiO2/zeolite Composite Catalysts with Enhanced Photocatalytic Activity

  • Zhao, Yuan;Li, JingXiu;Wang, Ling;Hao, Yanan;Yang, Lin;He, Pingting;Xue, JianJun
    • Nano
    • /
    • 제13권10호
    • /
    • pp.1850117.1-1850117.11
    • /
    • 2018
  • Sulfated $TiO_2$ nanoparticles were successfully immobilized on zeolite through improving hydrolysis-deposition method. Microstructure, crystallization, surface state and surface area of composite catalysts were characterized by SEM, XRD, FTIR spectra, XPS and BET and the photocatalytic activity was evaluated by degradation of methyl orange under UV irradiation. We optimized these factors ($SO^{2-}_4$ ions, calcination temperature and loading amount of sulfated $TiO_2$) on photocatalytic activity and crystallization of composite photocatalysts. The results indicated that the $SO^{2-}_4$ ions are successfully immobilized on the surface of $TiO_2$, and sulfated $TiO_2$/zeolite show the highest photocatalytic activity for methyl orange at the $[SO^{2-}_4 ]/[Ti^{4+}]$ molar rate of 1:1, calcination temperature of $600^{\circ}C$ for 2 h, and sulfated $TiO_2$ loading amount of 40%, respectively.

Template Synthesis and Characterization of Host (Nanocavity of Zeolite Y)-Guest ([Cu([18]aneN4S2)]2+, [Cu([20]aneN4S2)]2+, [Cu(Bzo2[18]aneN4S2)]2+, [Cu(Bzo2[20]aneN4S2)]2+) Nanocomposite Materials

  • Salavati-Niasari, Masoud;Mirsattari, Seyed Nezamodin;Saberyan, Kamal
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권2호
    • /
    • pp.348-354
    • /
    • 2009
  • Copper(II) complexes with tetraoxo dithia tetraaza macrocyclic ligands; [18]ane$N_4S_2$: 1,4,10,13-tetraaza-5,9,14,18-tetraoxo-7,16-dithia-cyclooctadecane, [20]ane$N_4S_2$: 1,5,11,15-tetraaza-6,10,16,20-tetraoxo-8,18-dithia-cyclocosane,Bzo2[18]ane$N_4S_2$: dibenzo-1,4,10,13-tetraaza-5,9,14,18-tetraoxo-7,16-dithia-cyclooctadecane, Bzo2[20]ane$N_4S_2$: dibenzo-1,5,11,15-tetraaza-6,10,16,20-tetraoxo-8,18-dithia-cyclocosane; were entrapped in the nanopores of zeolite-Y by a two-step process in the liquid phase: (i) adsorption of [bis(diamine)copper(II)] (diamine = 1,2-diaminoethane, 1,3-diaminopropane, 1,2-diaminobenzene, 1,3-diaminobenzene); $[Cu(N-N)_2]^{2+}$-NaY; in the nanopores of the zeolite, and (ii) in situ template condensation of the copper(II) precursor complex with thiodiglycolic acid. The obtained complexes and new host-guest nanocomposite materials; $[Cu([18]aneN_4S_2)]^{2+}-NaY,\;[Cu([20]aneN_4S_2)]^{2+}-NaY,\;[Cu(Bzo_2[18]aneN_4S_2)]^{2+}-NaY,\;[Cu(Bzo_2[20]aneN_4S_2)]^{2+}$-NaY; have been characterized by elemental analysis FT-IR, DRS and UV-Vis spectroscopic techniques, molar conductance and magnetic moment data, XRD and, as well as nitrogen adsorption. Analysis of data indicates all of the complexes have been encapsulated within nanopore of zeolite Y without affecting the zeolite framework structure.

Photocatalytic Epoxidation of Olefins Using Molecular O2 by TiO2 Incorporated in Hydrophobic Y Zeolite

  • Kuwahara, Yasutaka;Magatani, Yasuhiro;Yamashita, Hiromi
    • Rapid Communication in Photoscience
    • /
    • 제4권1호
    • /
    • pp.19-21
    • /
    • 2015
  • Zeolite is an ideal host material for encapsulating nano-size metal catalyst species because of its defined microporous structure, prominent adsorption/condensation properties, high surface area, chemical/thermal stability, and transparency to light. In this study, $TiO_2$ photocatalyst was incorporated in highly hydrophobic Y zeolite and its photocatalytic activity was examined in the photocatalytic oxidation of olefins under UV-light irradiation using molecular oxygen as an oxygen source. $TiO_2$ nanoparticles incorporated in hydrophobic Y zeolite exhibited a markedly enhanced photocatalytic activity compared with bare $TiO_2$ owing to its excellent affinity toward organic moieties, which facilitates the mass transfer of organic substrates and allows them to efficiently access to the neighboring active $TiO_2$ surface.