• Title/Summary/Keyword: nano-thick films

검색결과 102건 처리시간 0.027초

나노-펄스 노출에 따른 질소 첨가한 $Ge_2Sb_2Te_5$ 박막의 결정화 속도 평가 (An evaluation on crystallization speed of N doped $Ge_2Sb_2Te_5$ thin films by nano-pulse illumination)

  • 송기호;백승철;김흥수;이현용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.134-134
    • /
    • 2009
  • In this work, we report that crystallization speed as well as the electrical and optical properties about the N-doped $Ge_2Sb_2Te_5$ thin films. The 200-nm-thick N-doped $Ge_2Sb_2Te_5$ thin film was deposited on p-type (100) Si and glass substrate by RF reactive sputtering at room temperature. The amorphous-to-crystalline phase transformation of N-doped $Ge_2Sb_2Te_5$ thin films investigated by X-ray diffraction (XRD). Changes in the optical transmittance of as-deposited and annealed films were measured using a UV-VIS-IR spectrophotometer and four-point probe was used to measure the sheet resistance of N-doped $Ge_2Sb_2Te_5$ thin films annealed at different temperature. In addition, the surface morphology and roughness of the films were observed by Atomic Force Microscope (AFM). The crystalline speed of amorphous N-doped $Ge_2Sb_2Te_5$ films were measured by using nano-pulse scanner with 658 nm laser diode (power : 1~17 mW, pulse duration: 10~460 ns). It was found that the crystalline speed of thin films are decreased by adding N and the crystalline temperature is higher. This means that N-dopant in $Ge_2Sb_2Te_5$ thin film plays a role to suppress amorphous-to-crystalline phase transformation.

  • PDF

The Structural and Electrical Properties of Bismuth-based Pyrochlore Thin Films for embedded Capacitor Applications

  • Ahn, Kyeong-Chan;Park, Jong-Hyun;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권2호
    • /
    • pp.84-88
    • /
    • 2007
  • [ $Bi_{1.5}Zn_{1.0}Nb_{1.5}O_7$ ] (BZN), $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMN), and $Bi_2Cu_{2/3}Nb_{4/3}O_7$ (BCN) pyrochlore thin films were prepared on $Cu/Ti/SiO_2/Si$ substrates by pulsed laser deposition and the micro-structural and electrical properties were characterized for embedded capacitor applications. The BZN, BMN, and BCN films deposited at $25\;^{\circ}C$ and $150\;^{\circ}C$, respectively show smooth surface morphologies and dielectric constants of about $39\;{\sim}\;58$. The high dielectric loss of the films deposited at $150\;^{\circ}C$ compared with films deposited at $25\;^{\circ}C$ was attributed to the defects existing at interface between the films and copper electrode by an oxidation of copper bottom electrode. The leakage current densities and breakdown voltages in 200 nm thick-BMN and BZN films deposited at $150\;^{\circ}C$ are approximately $2.5\;{\times}\;10^{-8}\;A/cm^2$ at 3 V and above 10 V, respectively. Both BZN and BMN films are considered to be suitable materials for embedded capacitor applications.

Effect of double pinning mechanism in BSO-added GdBa2Cu3O7-x thin films

  • Oh, J.Y.;Jeon, H.K.;Lee, J.M.;Kang, W.N.;Kang, B.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권3호
    • /
    • pp.13-17
    • /
    • 2017
  • We investigated the effect of self-assembled BSO nano-defects as pinning centers in BSO-added GdBCO films when the thicknesses of films were varied. 3.5 vol. % BSO-added GdBCO films with varying thicknesses from 200 nm to 1000 nm were deposited on $SrTiO_3$ (STO) substrate by using pulsed laser deposition (PLD) process. For the films with thicknesses of 400 nm and 600 nm, 'anomaly shoulders' in $J_c-H$ characteristic curves were observed near the matching field. The anomaly shoulders appeared in the field dependence of $J_c$ may be attributed to the existence of double pinning mechanisms in thin films. The fit to the pinning force density as a function of reduced field h ($H/H_{irr}$) using the Dew-Hughes' scaling law shows that both the 400 nm- and the 600 nm-thick films have double pinning mechanisms while the other films have a single pinning mechanism. These results indicate that the self-assembled property of BSO result in different role as pinning centers with different thickness.

Anisotropy Coupling in Patterned Thin Films with Mixed Uniaxial Anisotropies

  • Nam, Yoon Jae;Lee, Tae Young;Lim, Sang Ho
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.232-236
    • /
    • 2014
  • Anisotropy coupling in thin films with mixed induced and shape anisotropies is investigated. A 200-nm-thick Co-Fe-Pd-B thin film with a large induced anisotropy of 57 Oe is fabricated and then patterned into micron-sized cells to provide shape anisotropy, whose strength has a similar magnitude to that of the induced anisotropy for enhancing the anisotropy coupling. The angles between the two mixed anisotropies considered are $0^{\circ}$, $90^{\circ}$, and $110^{\circ}$. Hysteresis loops measured under in-plane magnetic fields along various directions indicate no anisotropy coupling behaviour for all the three angles examined in this study.

Preparation of Gas Sensors with Nanostructured SnO2 Thick Films with Different Pd Doping Concetrations by an Ink Dropping Method

  • Yoon, Hee Soo;Kim, Jun Hyung;Kim, Hyun Jong;Lee, Ho Nyun;Lee, Hee Chul
    • 한국세라믹학회지
    • /
    • 제54권3호
    • /
    • pp.243-248
    • /
    • 2017
  • Pd-doped $SnO_2$ thick film with a pure tetragonal phase was prepared on patterned Pt electrodes by an ink dropping method. Nanostructured $SnO_2$ powder with a diameter of 10 nm was obtained by a modified hydrazine method. Then the ink solution was fabricated by mixing water, glycerol, bicine and the Pd-doped $SnO_2$ powder. When the Pd doping concentration was increased, the grain size of the Pd-doped $SnO_2$ thick film became smaller. However, an agglomerated and extruded surface morphology was observed for the films with Pd addition over 4 wt%. The orthorhombic phase disappeared even at a low Pd doping concentration and a PdO peak was obtained for a high Pd doping concentration. The crack-free Pd-doped $SnO_2$ thick films were able to successfully fill the $30{\mu}m$ gap of the patterned Pt electrodes by the optimized ink dropping method. The prepared 3 wt% Pd-doped $SnO_2$ thick films showed monoxide gas responses ($R_{air}/R_{CO}$) of 4.0 and 35.6 for 100 and 5000 ppm, respectively.

Nano-Mechanical and Tribological Characteristics of Ultra-Thin Amorphous Carbon Film Investigated by AFM

  • Chung, Koo-Hyun;Lee, Jae-Won;Kim, Dae-Eun
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1772-1781
    • /
    • 2004
  • The mechanical as well as tribological characteristics of coating films as thin as a few nm become more crucial as applications in micro-systems grow. Especially, the amorphous carbon film has a potential to be used as a protective layer for micro-systems. In this work, quantitative evaluation of nano-indentation, scratching, and wear tests were performed on the 7nm thick amorphous carbon film using an Atomic Force Microscope (AFM). It was shown that AFM-based nano-indentation using a diamond coated tip can be feasibly utilized for mechanical characterization of ultra-thin films. Also, it was found that the critical load where the failure of the carbon film occurred was about 18${\mu}$N by the ramp load scratch test. Finally, the wear experimental results showed that the quantitative wear rate of the carbon film ranged 10$\^$-9/~10$\^$-8/ ㎣ /N cycle. These experimental methods can be effectively utilized for a better understanding the mechanical and tribological characteristics at the nano-scale.

Transparent Capacitor of the $Bi_2Mg_{2/3}Nb_{4/3}O_7$(BMNO)-Bi Nanostructured Thin Films grown at Room Temperature

  • 송현아;나신혜;정현준;윤순길
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.20.2-20.2
    • /
    • 2011
  • BMNO dielectric materials with a pyrochlore structure have been chosen and they have quite high dielectric constants about 210 for the bulk material. In the case of thin films, 200-nm-thick BMNO films deposited at room temperature showed a low leakage current density of about $10^{-8}\;A/cm^2$ at 3 V and a dielectric constant of about 45 at 100 kHz. Because high dielectric constant BMNO thin films kept an amorphous phase at a high temperature above $900^{\circ}C$. High dielectric constant BMNO thin films grown at room temperature have many applications for flexible electronic devices. However, because the dielectric constant of the BMNO films deposited at room temperature is still low, percolative BMNO films (i.e., those were grown in a pure argon atmosphere) sandwiched between ultra-thin BMNO films grown in an oxygen and argon mixture have greater dielectric constants than standard BMNO films. However, they still showed a leakage problem at a high voltage application. Accordingly, a new nano-structure that uses BMNO was required to construct the films with a dielectric constant higher than that of its bulk material. The fundamental reason that the BMNO-Bi nano-composite films grown by RF-Sputtering deposition had a dielectric constant higher than that of the bulk material was addressed in the present study. Also we used the graphene as bottom electrode instead of the Cu bottom electrode. At first, we got the high leakage current density value relatively. but through this experiment, we could get improved leakage current density value.

  • PDF

PC 기판위에 성막한 IZO/Ag/IZO 박막의 특성과 이를 이용하여 제작한 플렉시블 유기발광다이오드의 특성 분석 (Characteristics of flexible IZO/Ag/IZO anode on PC substrate for flexible organic light emitting diodes)

  • 조성우;정진아;배정혁;문종민;최광혁;김한기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.381-382
    • /
    • 2007
  • IZO/Ag/IZO (IAI) anode films for flexible organic light emitting diodes (OLEDs) were grown on PC (polycarbonate) substrate using DC sputter (IZO) and thermal evaporator (Ag) systems as a function of Ag thickness. To investigate electrical and optical properties of IAI stacked films, 4-point probe and UV/Vis spectrometer were used, respectively. From a IAI stacked film with 12nm-thick Ag, sheet resistance of $6.9\;{\Omega}/{\square}$ and transmittance of above 82 % at a range of 500-550 nm wavelength were obtained. In addition, structural and surface properties of IAI stacked films were analyzed by XRD (X-ray diffraction) and SEM (scanning electron microscopy), respectively. Moreover, IAI stacked films showed dramatically improved mechanical properties when subjected to bending both as a function of number of cycles to a fixed radius. Finally, OLEDs fabricated on both flexible IAI stacked anode and conventional ITO/Glass were fabricated and, J-V-L characteristics of those OLEDs were compared by Keithley 2400.

  • PDF

임베디드 커패시터의 응용을 위해 CCL 기판 위에 평가된 BMN 박막의 특성 (The Properties of $Bi_2Mg_{2/3}Nb_{4/3}O_7$ Thin Films Deposited on Copper Clad Laminates For Embedded Capacitor)

  • 김혜원;안준구;안경찬;윤순길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.45-45
    • /
    • 2007
  • Capacitors among the embedded passive components are most widely studied because they are the major components in terms of size and number and hard to embed compared with resistors and inductors due to the more complicated structure. To fabricate a capacitor-embedded PCB for in-line process, it is essential to adopt a low temperature process (<$200^{\circ}C$). However, high dielectric materials such as ferroelectrics show a low permittivity and a high dielectric loss when they are processed at low temperatures. To solve these contradicting problems, we studied BMN materials as a candidate for dielectric capacitors. processed at PCB-compatible temperatures. The morphologies of BMN thin films were investigated by AFM and SEM equipment. The electric properties (C-F, I-V) of Pt/BMN/Cu/polymer were evaluated using an impedance analysis (HP 4194A) and semiconductor parameter analyzer (HP4156A). $Bi_2Mg_{2/3}Nb_{4/3}O_7$(BMN) thin films deposited on copper clad laminate substrates by sputtering system as a function of Ar/$O_2$ flow rate at room temperature showed smooth surface morphologies having root mean square roughness of approximately 5.0 nm. 200-nm-thick films deposited at RT exhibit a dielectric constant of 40, a capacitance density of approximately $150\;nF/cm^2$, and breakdown voltage above 6 V. The crystallinity of the BMN thin films was studied by TEM and XRD. BMN thin film capacitors are expected to be promising candidates as embedded capacitors for printed circuit board (PCB).

  • PDF

나노입자를 첨가한 전극용 무연 silver 페이스트의 제조 (Preparation of Lead-free Silver Paste with Nanoparticles for Electrode)

  • 박성현;박근주;장우양;이종국
    • 열처리공학회지
    • /
    • 제19권4호
    • /
    • pp.219-224
    • /
    • 2006
  • Silver paste with low sintered temperature has been developed in order to apply electronic parts, such as bus electrode, address electrode in PDP (Plasma Display Panel) with large screen area. In this study, nano-sized silver particles with 10-30 nm were synthesized from silver nitrate ($AgNO_3$) solution by chemical reduction method and silver paste with low sintered temperature was prepared by mixing silver nanoparticles, conventional silver powder with the particle size 1.6 um and Pb-free frit. Conductive thick film from silver paste was fabricated by screen printing on alumina substrate. After firing at $540^{\circ}C$, the cross section and surface morphology of the thick films were analyzed by FE-SEM. Also, the sheet resistivity of the fired thick films was measured using the four-point technique.