DOI QR코드

DOI QR Code

Effect of double pinning mechanism in BSO-added GdBa2Cu3O7-x thin films

  • Oh, J.Y. (Department of Physics, Chungbuk National University) ;
  • Jeon, H.K. (Department of Physics, Chungbuk National University) ;
  • Lee, J.M. (Department of Physics, Sungkyunkwan University) ;
  • Kang, W.N. (Department of Physics, Sungkyunkwan University) ;
  • Kang, B. (Department of Physics, Chungbuk National University)
  • Received : 2017.07.07
  • Accepted : 2017.09.14
  • Published : 2017.09.30

Abstract

We investigated the effect of self-assembled BSO nano-defects as pinning centers in BSO-added GdBCO films when the thicknesses of films were varied. 3.5 vol. % BSO-added GdBCO films with varying thicknesses from 200 nm to 1000 nm were deposited on $SrTiO_3$ (STO) substrate by using pulsed laser deposition (PLD) process. For the films with thicknesses of 400 nm and 600 nm, 'anomaly shoulders' in $J_c-H$ characteristic curves were observed near the matching field. The anomaly shoulders appeared in the field dependence of $J_c$ may be attributed to the existence of double pinning mechanisms in thin films. The fit to the pinning force density as a function of reduced field h ($H/H_{irr}$) using the Dew-Hughes' scaling law shows that both the 400 nm- and the 600 nm-thick films have double pinning mechanisms while the other films have a single pinning mechanism. These results indicate that the self-assembled property of BSO result in different role as pinning centers with different thickness.

Keywords

References

  1. B. Dam, J. M. Huijbregtse, F. C. Klaassen, R. C. F. Van der Greest and G. Doornbose, et al., "Origin of high critical currents in $YBa_2Cu_3O_{7-{\delta}}$ superconducting thin films," Nature, vol. 399, pp. 439-442, 1999. https://doi.org/10.1038/20880
  2. D. Larbalestier, A. Gurevich, D. Matthew Feldmann and A. Polyanskii, "High-Tc superconducting materials for electric power applications," Nature, vol. 414, pp 368-377, 2001. https://doi.org/10.1038/35104654
  3. T. Matsushita, "Flux pinning in superconducting 123 materials" Supercond. Sci. Technol., vol. 13, pp 730-737, 2000. https://doi.org/10.1088/0953-2048/13/6/320
  4. B. Maiorov, H. Wang, S. R. Foltyn, Y. Li and R. Depaula, et al., "Influence of naturally grown nanoparticles at the buffer layer in the flux pinning in $YBa_2Cu_3O_7$ coated conductors," Supercond. Sci. Technol., vol. 19, pp 891-895, 2006. https://doi.org/10.1088/0953-2048/19/9/001
  5. J. L. MacManus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang and A. Serquis, et al., "Strongly enhanced current densities in superconducting coated conductors of $YBa_2Cu_3O_{7-x}\;+\;BaZrO_3$," Nature Materials, vol. 3, pp. 439-443, 2004. https://doi.org/10.1038/nmat1156
  6. K. Matsumoto, P. Mele, A. Ichinose, M. Mukaida and Y. Yoshida, et al., "Flux Pinning Characteristics of Artificial Pinning Centers with Different Dimension," IEEE Tranl. Appl. Supercond., vol. 19, pp 3248, 2009. https://doi.org/10.1109/TASC.2009.2018186
  7. C. V. Varanasi, J. Burke, H. Wang, J. H. Lee and P. N. Barnes, "Thick $YBa_2Cu_3O_{7-x}\;+\;BaSnO_3$ films with enhanced critical current density at high magnetic fields," Appl. Phys. Lett., vol. 93, pp 092501, 2008. https://doi.org/10.1063/1.2976683
  8. A. Goyal, S. Kang, K. J. Leonard, P. M. Martin and A. A. Gapud, et al., "Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in $YBa_2Cu_3O_{7-{\delta}}$ films," Supercond. Sci. Technol., vol. 18, pp 1533-1538, 2005. https://doi.org/10.1088/0953-2048/18/11/021
  9. P. Mele, K. Matsumoto, T. Horide, A. Ichinose and M. Mukaida, et al., "Ultra-high flux pinning properties of BaMO3-doped $YBa_2Cu_3O_{7-x}$ thin films (M=Zr, Sn)," Supercond. Sci. Technol., vol. 21, pp 032002, 2008. https://doi.org/10.1088/0953-2048/21/3/032002
  10. T. Matsushita, H. Nagamizu, K. Tanabe, M. Kikuchi and E. S. Otabe, "Improvement of flux pinning performance at high magnetic fields in $GdBa_2Cu_3Oy$ coated conductors with BHO nano-rods through enhancement of $Bc_2$," Supercond. Sci. Technol., vol. 25, pp 125003, 2005.
  11. H. Tobita, K. Notoh, K. Higashikawa, M. Inoue and T. Kiss, et al., "Fabrication of $BaHfO_3$ doped $Gd_1Ba_2Cu_3O_{7-{\delta}}$ coated conductors with the high Ic of 85A/cm-w under 3T at liquid nitrogen temperature (77K)," Supercond. Sci. Technol., vol. 25, pp 062002, 2012. https://doi.org/10.1088/0953-2048/25/6/062002
  12. D. H. Tran, W. B. K. Putri, B. Kang, N. H. Lee, W. N. Kang and W. K. Seong, "Reducing the thickness dependence of critical current density in $GdBa_2Cu_3O_{7-{\delta}}$ thin films by addition of nanostructured defects," J. Appl. Phys., vol. 113, pp 17E134, 2013. https://doi.org/10.1063/1.4798233
  13. T. Horide, K. Taguchi, K. Matsumoto, N. Matsukida, M. Ishimaru and P. Mele, et al., "Influence of matching field on critical current density and irreversibility temperature in $YBa_2Cu_3O_7$ films with $BaMO_3$ (M=Zr, Sn, Hf) nanorods," Appl. Phys. Lett., vol. 108, pp 082601, 2016. https://doi.org/10.1063/1.4942463
  14. P. Mele, K. Matsumoto, T. Horide, A. Ichinose and M. Mukaida, et al., "Incorporation of double artificial pinning centers in $YBa_2Cu_3O_{7-{\delta}}$ films," Physica C, vol. 468, pp 1631-1634, 2008. https://doi.org/10.1016/j.physc.2008.05.228
  15. X. L. Wang, A. H. Li, S. Yu, S. Ooi and K. Hirata, et al., "Thermally assisted flux flow and individual vortex pinning in $Bi_2Sr_2Ca_2Cu_3O_{10}$ single crystals grown by the traveling solvent floating zone technique," J. Appl. Phys., vol. 97, pp 10B114, 2005. https://doi.org/10.1063/1.1855531
  16. T. Horide, K. Matsumoto, A. Ichinose, M. Mukaida and Y. Yoshida, et al., "Matching field effect of the vortices in $GdBa_2Cu_3O_{7-{\delta}}$ thin film with gold nanorods," Supercond. Sci. Technol., vol. 20, pp 303-306, 2007. https://doi.org/10.1088/0953-2048/20/4/001
  17. D. H. Tran, W. B. K. Putri, B. Kang, N. H. Lee and W. N. Kang, "A close correlation between nanostructure formations and the thickness dependence of the critical current density in pure and $BaSnO_3$ added $GdBa_2Cu_3O_{7-{\delta}}$ films," J. Appl. Phys., vol. 115, pp 163901, 2014. https://doi.org/10.1063/1.4872264
  18. K. Chiba, S. Makino, M. Mukaida, M. Kusunoki and S. Oshima, "The Effect of Lattice Matching between Buffer Layer and $YBa_2Cu_3O_{7-{\delta}}$ Thin Film on In-plane Alignment of C-axis Oriented Thin Films," IEEE Trans. Appl. Supercond., vol. 11, pp 2734-2737, 2001. https://doi.org/10.1109/77.919628
  19. J. I. Langford and A. J. C. Wilson, "Scherrer after sixty years: A survey and some new results in the determination of crystallite size," J. Appl. Cryst., vol. 11, pp 102-113, 1978. https://doi.org/10.1107/S0021889878012844
  20. G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin and V. M. Vinokur, "Vortices in high-temperature superconductors," Rev. Mod. Phys., vol. 66, pp 1125, 1994. https://doi.org/10.1103/RevModPhys.66.1125
  21. A. V. Pan, S. Pysarenko and S. X. Dou, "Drastic improvement of surface structure and current-carrying ability in $YBa_2Cu_3O_7$ films by introducing multilayered structure," Appl. Phys. Lett., vol. 88, pp 232506, 2006. https://doi.org/10.1063/1.2211051
  22. P. N. Barnes, T. J. Haugan, C. V. Varanasi and T. A. Campbell, "Flux pinning behavior of incomplete multilayered lattice structures in $YBa_2Cu_3O_{7-d}$," Appl. Phys. Lett., vol. 85, pp 4088, 2004. https://doi.org/10.1063/1.1809274
  23. T. Horide, T. Kawamura, K. Matsumoto, A. Ichinose and M. Yoshizumi, et al., "$J_c$ improvement by double artificial pinning centers of $BaSnO_3$ nanorods and $Y_2O_3$ nanoparticles in $YBa_2Cu_3O_7$ coated conductors," Supercon. Sci. Technol., vol. 26, pp 075019, 2013. https://doi.org/10.1088/0953-2048/26/7/075019
  24. Dew-Hughes, "Flux pinning mechanism in type II superconductors," Phil. Mag., vol. 30, pp 293, 1974 https://doi.org/10.1080/14786439808206556
  25. P. Mele, K. Matsumoto, A. Ichinose, M. Mukaida and Y. Yoshida, et al., "Systematic study of the $BaSnO_3$ insertion effect on the properties of $YBa_2Cu_3O_{7-x}$ films prepared by pulsed laser ablation," Supercond. Sci. Technol., vol. 21, pp 125017, 2008. https://doi.org/10.1088/0953-2048/21/12/125017