• 제목/요약/키워드: nano-sheets

검색결과 101건 처리시간 0.038초

Gold functionalized-graphene oxide-reinforced acrylonitrile butadiene rubber nanocomposites for piezoresistive and piezoelectric applications

  • Mensah, Bismark;Kumar, Dinesh;Lee, Gi-Bbeum;Won, Joohye;Gupta, Kailash Chandra;Nah, Changwoon
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.1-13
    • /
    • 2018
  • Gold functionalized graphene oxide (GOAu) nanoparticles were reinforced in acrylonitrile-butadiene rubbers (NBR) via solution and melt mixing methods. The synthesized NBR-GOAu nanocomposites have shown significant improvements in their rate of curing, mechanical strength, thermal stability and electrical properties. The homogeneous dispersion of GOAu nanoparticles in NBR has been considered responsible for the enhanced thermal conductivity, thermal stability, and mechanical properties of NBR nanocomposites. In addition, the NBR-GOAu nanocomposites were able to show a decreasing trend in their dielectric constant (${\varepsilon}^{\prime}$) and electrical resistance on straining within a range of 10-70%. The decreasing trend in ${\varepsilon}^{\prime}$ is attributed to the decrease in electrode and interfacial polarization on straining the nanocomposites. The decreasing trend in electrical resistance in the nanocomposites is likely due to the attachment of Au nanoparticles to the surface of GO sheets which act as electrical interconnects. The Au nanoparticles have been proposed to function as ball rollers in-between GO nanosheets to improve their sliding on each other and to improve contacts with neighboring GO nanosheets, especially on straining the nanocomposites. The NBR-GOAu nanocomposites have exhibited piezoelectric gauge factor (${GF_{\varepsilon}}^{\prime}$) of ~0.5, and piezo-resistive gauge factor ($GF_R$) of ~0.9 which clearly indicated that GOAu reinforced NBR nanocomposites are potentially useful in fabrication of structural, high temperature responsive, and stretchable strain-sensitive sensors.

친환경 안경테 판재의 심입 가공성 향상을 위한 고비열 가소제 혼입에 관한 연구 (Study on the Eco-friend Frame Sheet with Improved Glasses Temple's Insertion-processibility by Blending Plasticizer of High Specific Heat)

  • 서영민;이해성;이성준;정상원;김현철;김은주;고영준;최진현;이세근
    • 한국안광학회지
    • /
    • 제18권1호
    • /
    • pp.11-17
    • /
    • 2013
  • 목적: 본 연구는 cellulose acetate/poly ethylene glycol(CA/PEG) 안경테용 판재의 심입가공성을 향상시키기 위하여 심입가공온도 영역에서 비교적 높은 비열을 갖는 친환경 가소제인 triacetin을 2차 가소제로 도입함으로써 가공 효율이 향상 된 친환경 안경테 판재를 제조하는데 목적이 있다. 방법: 전체 가소제의 양을 CA 대비 30 wt%로 고정하고 1차 가소제인 PEG와 2차 가소제인 triacetin의 함량을 조절하여 제조된 CA/PEG/triacetin 조성물의 비열 및 열적특성을 분석하고, 다양한 기계적 물성과 광학적 특성의 비교분석을 통해 우수한 가공성을 갖는 안경테 소재를 위한 최적의 가소제 조성을 결정하였다. 결과: Triacetin 도입을 통해 CA 판재의 비열 상승을 확인하였으며, triacetin 함량비가 증가할수록 유리전이온도(Tg)가 낮아지고 심입가공성의 척도가 되는 감온속도의 감소를 확인하였다. 또한 기존의 CA/PEG 안경테 소재와 비교 시 우수한 광택특성 및 경도를 확인하였으며, 동등수준 이상의 기계적 물성을 보임을 확인하였다. 결론: PEG/triacetin의 투입비율을 조절하여 심입가공성을 향상시키고, 안경테 판재로 사용되기 적합한 물성 및 특유의 광택과 우수한 심미성을 만족하는 CA 판재를 제조할 수 있다.

Coating Layer Behavior Analysis of Al-Si Coated Boron Steel in Hot Bending Process

  • 이양;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.307-310
    • /
    • 2009
  • Nowadays, the usage of high strength steel has been growing in automobile industry mainly as structural parts since for its lightweight and high strength properties the oil crisis happened. Owing to poor formability, complex-shaped high-strength steel components are invariably produced through hot press forming. The high-strength steel sheets are in so me instances used with an Al-Si-coating with a view to prevent scaling of components during hot press forming. How ever, friction and fracture characteristics of Al-Si-coated high-strength steel during hot press forming process have not yet been investigated. In this paper, the formed parts which were formed in hot bending process were investigated by using EDS. SEM and nano indenter in order to analysis the coating layer behavior.

  • PDF

FPD에 사용되는 고분자 재료의 기계적 물성특성 연구 (Micro Scale Mechanical property of Polymeric materials for FPD(Flat Panel display))

  • 이낙규;이혜진;이형욱;정유진;최두선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.220-224
    • /
    • 2005
  • The technology trend of Flat Panel Display (FPD) equipments have been demanded that there are compact and multi-function. Therefore, nano/micro scale patterned on polymeric materials of Back Light Unit (BLU) in Liquid Crystal Display (LCD) that has been investigated. This paper describes a series of Horizontal Type Micro Tensile Tester that were carried out to investigate the load strain distance performance of typical polymeric material sheets. The polymeric materials film that micro size shaped specimens for tensile test are used by Cold-Isostatic-Press (CIP). Test equipment is Horizontal type Micro Tensile Tester that is presented to measure the micro scale mechanical property of thin film for FPD. This paper presents which easy testing tools measure for micro patterned on polyethylene (PET) specimens.

  • PDF

누적압연접합(Accumulative Roll-Bonding, ARB)에 의한 Al의 결정립 미세화와 마모 특성 연구 (An Investigation of Sliding Wear and Microstructural Evolution of Ultra-Fine Grained Pure Al Fabricated by ARB Process)

  • 박관순;이태오;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.21-24
    • /
    • 2000
  • Ultra-fine grains were produced in pure Al using an Accumulative Rolling-Bonding (ARB) process. After several cycles of the ARB process, pure Al sheets were filled with the ultra-fine grains whose diameters were several hundred nano-meters. With ARB cycles, the nature of grain boundaries of the ultra-fine grains changed from diffusive sub-boundaries to well-defined high angle boundaries. After 7 cycles, ultra-fine polycrystals with large misorientations between neighboring grains were obtained. Sliding wear tests using a pin-on-disk type wear tester were co ducted on the ultra-fine grained pure Al. Wear rates of pure Al increased with the increase of ARB cycle numbers in spite of the increase in hardness. Worn surfaces and cross-sections were examined with optical microscopy (OM) and scanning electron microscopy (SEM) In investigate the wear mechanism of the ultra-fine grained pure Al.

  • PDF

Preparation, Characterization, and Catalytic Applications of Graphene-palladium Nanocomposites

  • 홍영국;유세희;박준범
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.262-262
    • /
    • 2012
  • Modifications of graphenes have been studied for catalytic applications due to their advantages such as high surface area, conductivity and thermal stability. In this research, individual graphene oxide (GO) sheets were exfoliated from graphite using Hummers and Offeman method. Pd nano-particles were deposited on the GO surface using Pd2+ ion exchange where hydroxyl groups on the GO act as nucleation sites of Pd nanoparticles and their dispersions. The thermal treatments of the Pd-GO in H2 flow produced Pd-Graphene nanocomposites. Their catalytic performances in Sonogashira reaction were investigated. Morphological and chemical structures of the GO, Pd-GO, and Pd-Graphene were investigated using FT-IR, XRD, TEM, STEM, and XPS. The catalytic performances have been investigated using microwave reactor.

  • PDF

Effect of laminate configuration on the free vibration/buckling of FG Graphene/PMMA composites

  • Zeverdejani, Mehran Karimi;Beni, Yaghoub Tadi
    • Advances in nano research
    • /
    • 제8권2호
    • /
    • pp.103-114
    • /
    • 2020
  • In this research, buckling and free vibration of rectangular polymeric laminate reinforced by graphene sheets are investigated. Various patterns are considered for augmentation of each laminate. Critical buckling load is evaluated for different parameters, including boundary conditions, reinforcement pattern, loading regime, and laminate geometric states. Furthermore, vibration analysis is investigated for square laminate. Elastic properties of the composite are calculated using a combination of both molecular dynamics (MD) and the rule of mixture (MR). Kinematics of the plate is approximated based on the first shear deformation theory (FSDT). The current analysis is performed based on the energy method. For the numerical investigation, Ritz method is applied, and for shape functions, Chebyshev polynomials are utilized. It is found that the number of layers is effective on the buckling load and natural frequency of laminates which made from non-uniform layers.

Synthesis of Zinc Oxide Nano Rods, Sheet and Flower at $80^{\circ}C$ by the Sol-gel Method

  • Wahab, Rizwan;Ansari, S.G.;Kim, Y.S.;Dar, M.A.;Shin, H.S.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.676-677
    • /
    • 2006
  • Synthesis of zinc oxide nanorods, sheets and flower like structure were done by the sol-gel method using zinc acetate dihydrate and sodium hydroxide at $80^{\circ}C$ with 12 hours refluxing time nanorods, in case of as synthesized powder, with diameter of 20-60nm. Annealing at higher temperature (300 and $500^{\circ}C$,) in air ambient changes the morphology to sheet and flower like structure. The standard peak of zinc oxide was observed in IR at $523cm^{-1}$. The UV-VIS spectroscopy of zinc oxide shows a characteristic peak at 375nm.

  • PDF

Synthesis and Characterization of Graphene Based Unsaturated Polyester Resin Composites

  • Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권2호
    • /
    • pp.53-58
    • /
    • 2013
  • Graphene-based polymer nanocomposites are very promising candidates for new high-performance materials that offer improved mechanical, barrier, thermal and electrical properties. Herein, an approach is presented to improve the mechanical, thermal and electrical properties of unsaturated polyester resin (UPR) by using graphene nano sheets (GNS). The extent of dispersion of GNS into the polymer matrix was also observed by using the scanning electron microscopy (SEM) which indicated homogeneous dispersion of GNS through the UPR matrix and strong interfacial adhesion between the GNS and UPR matrix were achieved in the UPR composite, which enhanced the mechanical properties. The tensile strength of the nanocomposites improved at a tune of 52% at a GNS concentration of 0.05%. Again the flexural strength also increased around 92% at a GNS concentration of 0.05%. Similarly the thermal properties and the electrical properties for the nanocomposites were also improved as evidenced from the differential scanning caloriemetry (DSC) and dielectric strength measurement.

선형 유도기 구동 방식 공기 베어링 스테이지에 관한 연구 (Study on the Air-bearing Stage Driven by Linear Induction Motors)

  • 정광석;심기본
    • 한국정밀공학회지
    • /
    • 제27권6호
    • /
    • pp.39-46
    • /
    • 2010
  • Linear induction motor is adopted as an actuator of the planar stage. An inherently poor characteristic at zero or ultra-low speed zone of the induction motor is remarkably improved due to a recent development of power electronic semiconductor technology and a spatial vector control theory. At present, a servo response speed of the induction motor reaches 90 percent of one of PM synchronous or BLDC motor. Specially, as a secondary of the induction motor can be constructed using uniform conducting sheets, there is no periodic force ripple as in PM motors. So, the induction motor can be superior to another driving means under a certain condition. This paper discusses the overall development procedure of non-contact planar stage with a big workspace using linear induction motors.