• 제목/요약/키워드: nano-second laser

검색결과 43건 처리시간 0.037초

펨토초 레이저를 이용한 극미세 광조형 기반공정 개발 (Fundamental Process Development of a Ultramicro-Stereolithography using a Femto-second Laser for Manufacturing Nano-scaled Features)

  • 박상후;임태우;정창균;이신욱;이성구;공홍진;양동열
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.180-187
    • /
    • 2004
  • The miniaturization technologies are perceived as potential key technologies of the future. They will bring about completely different ways in which people and machines interact with the physical world. However, at the present time, the primary technologies used fur miniaturization are dependent on the microelectronic fabrication techniques. The principal shortcomings associated with such techniques are related to the inability of to produce arbitrary three-dimensional features not only in electronics but also in a wide range of metallic materials. In this paper, a ultramicro-stereolithography system assisted with a femto-second laser was developed to fabricate the arbitrary three-dimensional nano/micro-scaled features. In the developed process, a femto-second laser is projected according to CAD data on a photosensitive monomer resin, it induces polymerization of the liquid resin. After the polymerization, a droplet of ethanol is dropped to remove the liquid resin and then the polymerized nano-scaled features only remain. By a newly developed process, miniature devices for an extremely wide range of applications would become a technologically feasible reality. Some of nano/micro-scaled features as examples were fabricated to prove the usefulness of this study at the fundamental stage.

나노초 레이저 가공에서 초음파 진동이 가공표면에 미치는 영향 (The Effects of Ultrasonic Vibration on Surface Finish in Nano-second Laser Machining)

  • 강봉철;김건우;조성학;박종권;양민양
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.402-406
    • /
    • 2010
  • Conventionally, the machined surface roughness in nano-second(ns) laser machining is damaged and rough due to thermal effects. To obtain the improved surface finish, the ultrasonic vibration is applied to ns-laser machining. The ultrasonic vibration jig is developed to apply the ultrasonic high precision motion to workpieces. And then the ns-laser machining is conducted to compare the effects of the ultrasonic vibration. The results show that the surface roughness with ultrasonic vibration is smoother than that without the vibration. The phenomenon could be explained as enhancement of heat transfer by ultrasonic vibration.

펨토초 레이저를 이용한 SUS304 의 마이크로 홈가공 (Micro-groove machining of SUS304 using by femto second laser)

  • 곽태수;오오모리 히토시
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1179-1180
    • /
    • 2005
  • 3D micro scaled shapes are fabricated with the method of direct writing and superposing grooving in ambient air using femto-second laser pulses and copper, aiming at establishing an industrially useful femto-second laser processing machine to be able to fabricate three dimensional micro-scale structures, especially micro scaled molds, and processing techniques. For the several advantages, there is no thermally influenced region around the area irradiated by the laser beam and surfaces irradiated laser beam are smooth and substances ablated to form are no attached on the surface of works and so on, the femto-second laser technology is anticipated for advanced micro/nano precision technology.

  • PDF

나노초 및 피코초 레이저를 이용한 FPCB의 절단특성 분석 (FPCB Cutting Process using ns and ps Laser)

  • 신동식;이제훈;손현기;백병만
    • 한국레이저가공학회지
    • /
    • 제11권4호
    • /
    • pp.29-34
    • /
    • 2008
  • Ultraviolet laser micromachining has increasingly been applied to the electronics industry where precision machining of high-density, multi-layer, and multi material components is in a strong demand. Due to the ever-decreasing size of electronic products such as cellular phones, MP3 players, digital cameras, etc., flexible printed circuit board (FPCB), multi-layered with polymers and metals, tends to be thicker. In present, multi-layered FPCBs are being mechanically cut with a punching die. The mechanical cutting of FPCBs causes such defects as burr on layer edges, cracks in terminals, delamination and chipping of layers. In this study, the laser cutting mechanism of FPCB was examined to solve problems related to surface debris and short-circuiting that can be caused by the photo-thermal effect. The laser cutting of PI and FCCL, which are base materials of FPCB, was carried out using a pico-second laser(355nm, 532nm) and nano-second UV laser with adjusting variables such as the average/peak power, scanning speed, cycles, gas and materials. Points which special attention should be paid are that a fast scanning speed, low repetition rate and high peak power are required for precision machining.

  • PDF

복셀 차감법에 의한 나노 복화공정 정밀화 (Development of Contour Offset Algorithm(COA) in nRP Process for Fabricating Nano-precision Features)

  • 임태우;박상후;양동열;이신욱;공홍진
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.160-166
    • /
    • 2004
  • In this study, a new algorithm, named as Contour Offset Algorithm(COA) is developed to fabricate precise features or patterns in the range of several micrometers by nano replication printing(nRP) process. In the nRP process, a femto-second laser is scanned on a photosensitive monomer resin in order to induce polymerization of the liquid monomer according to a voxel matrix which is transformed from the bitmap format file. After polymerization, a droplet of ethanol is dropped to remove the unnecessary remaining liquid resin and then only the polymerized figures with nano-scaled precision are remaining on the glass plate. To obtain more precise replicated features, the contour lines in voxel matrix should be modified considering a voxel size. In this study, the efficiency of the proposed method is shown through two examples in view of accuracy.

자외선 나노초 펄스 레이저를 이용한 경연성(Rigid Flexible) 인쇄전자회로기판(Printed Circuit Board) 고속 절단에 관한 연구 (Study on High Speed Laser Cutting of Rigid Flexible Printed Circuit Board by using UV Laser with Nano-second Pulse Width)

  • 배한성;박희천;류광현;남기중
    • 한국정밀공학회지
    • /
    • 제27권2호
    • /
    • pp.20-24
    • /
    • 2010
  • High speed cutting processes of rigid flexible printed circuit board by making use of high power UV laser with nano-second pulse width have been proposed and investigated experimentally. Also robust laser cutting system has been designed and developed in order to obtain a good cutting quality of rigid and flexible PCB with multi-layers (2-6 layers). Power controller module developed for ourselves is adapted to control the laser output power in the range less than 1%. The systems show the good performance of cutting speed, cutting width and cutting accuracy, respectively. Especially we have confirmed that the short circuit problem due to the carbonized contamination occurred in cross section of multi-layers by thermal effect of high power laser has been improved largely by using multi-pass cutting process with low power and high speed.

Novel Fabrication of Platinum Counter Electrode in Dye-sensitized Solar Cells Using Nano-second Pulsed Laser Sintering

  • Lee, Jin Ah;Yoo, Kicheon;Kim, Woong;Ko, Min Jae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.234-234
    • /
    • 2013
  • The counter electrodes in dye-sensitized solar cells (DSSCs) play roles in not only collecting electrons from external circuit but also reducing I3- to I- in electrolytes. Generally, conventional counter electrodes for DSSCs are prepared from the high temperature treatment of the H2PtCl6 precursor solution at $400^{\circ}C$ However, the more simplified fabrication process of counter electrodes is required for the commercialization of DSSCs. In this work, we developed novel fabrication process of counter electrodes using nano-second pulsed laser. DSSCs employing counter electrodes prepared by laser process showed conversion efficiency of 6.75% with short-circuit current of 12.73 mA/cm2, open-circuit voltage of 0.74 V and fill factor of 0.72. Closer investigating of photovoltaic properties will be reported.

  • PDF