E-009

Novel Fabrication of Platinum Counter Electrode in Dye-sensitized Solar Cells Using Nano-second Pulsed Laser Sintering

Jin Ah Lee^{1,2}, Kicheon Yoo^{1,3}, Woong Kim², Min Jae Ko¹*

¹Korea Institute of Science and Technology, Seoul 136-791, ²Department of Materials Science and Engineering, Korea University, Seoul 136-713, ³Department of Chemical Engineering, Yonsei University, Seoul 120-749, Korea

The counter electrodes in dye-sensitized solar cells (DSSCs) play roles in not only collecting electrons from external circuit but also reducing I3- to I- in electrolytes. Generally, conventional counter electrodes for DSSCs are prepared from the high temperature treatment of the H2PtCl6 precursor solution at 400°C However, the more simplified fabrication process of counter electrodes is required for the commercialization of DSSCs. In this work, we developed novel fabrication process of counter electrodes using nano-second pulsed laser. DSSCs employing counter electrodes prepared by laser process showed conversion efficiency of 6.75% with short-circuit current of 12.73 mA/cm2, open-circuit voltage of 0.74 V and fill factor of 0.72. Closer investigating of photovoltaic properties will be reported.

Acknowledgement

This research was supported by the Pioneer Research Program funded by the National Research Foundation under the Ministry of Education, Science and Technology, Korea (2012-0005955); by the Global Frontier R&D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Education, Science and Technology, Korea (2011-0031576); by KIST internal project (2E23821).

Keywords: Dye-sensitized solar cell, Counter electrode, Laser sintering