• Title/Summary/Keyword: nano-powders

Search Result 604, Processing Time 0.028 seconds

Phase Evolution and Thermo-physical Properties of Rare-earth Oxides for Thermal Barrier Systems (열차폐용 희토류 산화물의 상형성과 열물성)

  • Shim, Byung-Chul;Kwak, Kil-Ho;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seong-Won
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.148-153
    • /
    • 2010
  • Thermal barrier systems have been widely investigated over the past decades, in order to enhance reliability and efficiency of gas turbines at higher temperatures. Yttria-stabilized zirconia (YSZ) is one of the most leading materials as the thermal barriers due to its low thermal conductivity, thermodynamic stability, and thermal compatibility with metal substrates. In this work, rare-earth oxides with pyrochlore phases for thermal barrier systems were investigated. Pyrochlore phases were successfully formed via solid-state reactions started from rare-earth oxide powders. For the heat-treated samples, thermo-physical properties were examined. These rare-oxide oxides showed thermal expansion of $9{\sim}12{\times}10^{-6}/K$ and thermal conductivity of 1.2~2.4 W/mK, which is comparable with the thermal properties of YSZ.

The UV/Ozone Stability of PET and Nylon 6 Nanocomposite Films Containing TiO2 Photocatalysts (TiO2 광촉매를 함유한 PET와 나일론 6 나노복합체막의 자외선/오존에 대한 안정성)

  • Jin, Sung-Woo;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.26 no.2
    • /
    • pp.88-98
    • /
    • 2014
  • This study is to assess the photocatalytic degradation of PET and Nylon 6 films containing nano-sized $TiO_2$ powders of anatase and rutile types. The PET and Nylon 6 films containing six kinds of the nanoparticles were prepared by melt casting method using a heating press machine. Reflectance in visible region and water contact angles of the irradiated PET and Nylon 6 composite films decreased with increasing UV/$O_3$ irradiation. Also the enhanced hydrophilicity has a close relationship with the increase in the Lewis base parameter, which indicates more oxidized polymer surfaces. The photocatalytic degradation of the nanocomposite films increased with increasing $TiO_2$ content and UV energy, which is more significant with the anatase types rather than the rutile types. The amide linkages in the Nylon 6 seemed to be more susceptible to the UV light compared to the ester groups in the PET, particularly in the presence of the $TiO_2$ photocatalysts. The photoscission and photodegradation of the polymers in the composites produced more degraded structure assisted by the photocatalytic activity of the $TiO_2$ nanoparticles. Also the composite films can bleach the methylene blue dyes more easily under the UV/$O_3$ irradiation, suggesting the photobleaching activity of the $TiO_2$ nanoparticles.

The Powder Preparation of Blue Cobalt Aluminate at 210 °C Using the Malonate Method

  • Lee, Gong-Yeol;Lee, Dong-Hoon;Kim, Hong-Gun;Kim, Yoo-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.47-51
    • /
    • 2010
  • A powder, containing 80 percent of blue cobalt aluminate $(CoAl_2O_4)$ crystallites, was synthesized at $210 ^{\circ}C$ using a (metal nitrate-malonic acid-ammonium hydroxide-ammonium nitrate) system. The optimal amount of concentrated ammonia water and initial decomposition temperature were determined for the blue $CoAl_2O_4$ crystallites preparation. Three $CoAl_2O_4$ precursor pastes, corresponding to the various amounts of concentrated ammonia water, were prepared by evaporating the initial solutions in an electric furnace fixed at $80 ^{\circ}C$ under a vacuum of 25 torr. The initial solution was used to dissolve the starting materials. The powder with the maximum content (80%) of blue $CoAl_2O_4$ crystallites was prepared when the prepared precursor was decomposed at $210 ^{\circ}C$. The blue $CoAl_2O_4$ crystallite content in the prepared sample decreased with increasing initial decomposition temperature. For 0.2 mole of the $Al^{3+}$ ion, the chemical compositions of the precursor corresponded to molar ratios of 0.4, 1.40, 2.56 and 2.00 for the $Co^{2+}$ ion, malonic acid, ammonia and ammonium nitrate per mole of the $Al^{3+}$ ion, respectively. The blue $CoAl_2O_4$ crystallite content in the sample decreased with the amount of ammonia deviated from the optimal value. The characteristics of the powders were examined using X-ray diffraction, optical microscopy, Fourier transformation infrared spectroscopy and the Brunauer-Emmett-Teller technique.

Thermoelectric Properties of Mg3-xZnxSb2 Fabricated by Mechanical Alloying (기계적 합금법으로 제조한 Mg3-xZnxSb2의 열전물성)

  • Kim, In-Ki;Jang, Kyung-Wook;Kim, Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • $Mg_{3-x}Zn_xSb_2$ powders with x = 0-1.2 were fabricated by mechanical alloying in a planetary ball mill with a speed of 350 rpm for 24 hrs and then hot pressed under a pressure of 70 MPa at 773 K for 2 hrs. It was found that there were systematic shifts in the X-ray diffraction peaks of $Mg_3Sb_2$ (x = 0) toward a higher angle with increasing Zn for both the powder and the bulk sample and finally the phase of $Mg_{1.86}Zn_{1.14}Sb_2$ was formed at the Zn content of x = 1.2. The $Mg_{3-x}Zn_xSb_2$ compounds had nano-sized grains of 21-30 nm for the powder and 28-66 nm for the hot pressed specimens. The electrical conductivity of hot pressed $Mg_{3-x}Zn_xSb_2$ increased with increasing Zn content and temperature from 33 $Sm^{-1}$ for x = 0 to 13,026 $Sm^{-1}$ for x = 1.2 at 323 K. The samples for all the compositions from x = 0 to x = 1.2 had positive Seebeck coefficients, which decreased with increasing Zn content and temperature, which resulted from the increased charge carrier concentration. Most of the samples had relatively low thermal conductivities comparable to the high performance thermoelectric materials. The dimensionless figure of merit of $Mg_{3-x}Zn_xSb_2$ was directly proportional to the Zn content except for the compound with Zn = 1.2 at high temperature. The $Mg_{3-x}Zn_xSb_2$ compound with Zn = 0.8 had the largest value of ZT, 0.33 at 723 K.

Synthesis of high purity aluminum nitride nanopowder by RF induction thermal plasma (유도결합 열 플라즈마를 이용한 고순도 질화알루미늄 나노 분말 합성)

  • Kim, Kyung-In;Choi, Sung-Churl;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Aluminum nitride, which has outstanding properties such as high thermal conductivity and electrical resistivity, has been received a great attention as a substrate and packaging material of semiconductor devices. Since aluminum nitride has a high sintering temperature of 2173 K and its properties depends on the impurity level, it is necessary to synthesize high-purity and nano-sized aluminum nitride powders for the applications. In this research, we synthesized high purity aluminum nitride nanopowders from aluminum using RF induction thermal plasma system. Sheath gas (NH3) flow was controlled to establish the synthesis condition of high purity aluminum nitride nanopowders. The obtained aluminum nitride nanopowders were evaluated by XRD, SEM, TEM, BET, FTIR and N-O analysis.

Photoluminescence Characteristics of $Y_3Al_5O_{12}:Ce^{3+},Eu^{3+}$ Phosphors by $Eu^{3+}$ ions ($Eu^{3+}$ 농도에 따른 $Y_3Al_5O_{12}:Ce^{3+},Eu^{3+}$ 형광체의 광학적 특성)

  • Kwak, Hyun-Ho;Kim, Se-Jun;Park, Yong-Seo;Choi, Hyung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.441-442
    • /
    • 2008
  • For this study, Yttrium aluminum garnet (YAG) particles co-doped with $Ce^{3+}$ and $Eu^{3+}$ were prepared via the combustion process using the 1:1 ratio of metal ions to reagents. The characteristics of the synthesized nano powder were investigated by means of X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and photoluminescence (PL). The various YAG peaks, with the (420) main peak, appeared at all Eu concentrationin XRD patterns. The YAG phase crystallized with results that are in good agreement with the JCPDS diffraction file 33-0040. The SEM image showed that the resulting YAG:Ce,Eu powders had uniform sizes and good homogeneity. The grain size was about 50nm. The photoluminescence spectra of the YAG:Ce,Eu nanoparticles were investigated to determine the energy level of electron transition related to luminescence processes. It was composed a broad band of $Ce^{3+}$ activator into the weak line peak of $Eu^{3+}$ in YAG host. The PL intensity of $Ce^{3+}$ has the wavelengths of 480-650 nm and The PL intensity of $Eu^{3+}$ has main peak at 590nm.

  • PDF

Preparation of $Ce_{0.8}Sm_{0.2}O_{x}$ Electrolyte Thin Film for Solid Oxide Fuel Cells by Electrophoretic Deposition (전기영동법을 이용한 고체산화물 연료전지용 $Ce_{0.8}Sm_{0.2}O_{x}$ 전해질 박막 제조)

  • Kim, Dong-Gyu;Song, Min-Wu;Lee, Kyeong-Seop;Kim, Yoen-Su;Kim, Young-Soon;Shin, Hyung-Shik
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.781-785
    • /
    • 2011
  • In this work, a nano-sized samaria-doped ceria(SDC) was prepared by a urea-based hydrothermal method and characterized by XRD, FESEM and TEM. It was observed that the increase in synthesis time and temperature gave rise to crystallity and particles size. Moreover, the synthesised powders had a excellent ion-conductivity(0.1 S/cm at 600~$800^{\circ}C$) which is suitable for electrolyte of intermediate temperature-solid oxide fuel cell(IT-SOFC). Subsequently for use as electrolyte for anode-supported IT-SOFC, we tried to deposit the SDC powder on a porous NiO-SDC substrate by electrophoretic deposition(EPD) method. From the FESEM observation, a compact

Synthesis of zinc oxide nanoparticles via aqueous solution routes (수용액 합성법에 의한 ZnO 나노분말의 합성)

  • Koo, Jin Heui;Yang, Jun Seok;Cho, Soo Jin;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.5
    • /
    • pp.175-180
    • /
    • 2016
  • ZnO nanoparticles were synthesized by aqueous preparation routes of a precipitation and a hydrothermal process. In the processes, the powders were formed by mixing aqueous solutions of Zn-nitrate hexahydrate ($Zn(NO_3)_2{\cdot}6H_2O$) with NaOH aqueous solution under controlled reaction conditions such as Zn precursor concentration, reaction pH and temperature. Single ZnO phase has been obtained under low Zn precursor concentration, high reaction pH and high temperature. The synthesized particles exhibited flakes (plates), multipods or rods morphologies and the crystallite sizes and shapes would be efficiently controllable by changing the processing parameters. The hydrothermal method showed advantageous features over the precipitation process, allowing the precipitates of single ZnO phase with higher crystallinity at relatively low temperatures below $100^{\circ}C$ under a wider pH range for the Zn precursor concentration of 0.1~1 M.

Preparation Nanosized TPA-Silicalite-1 with Different Silica Sources and Promoters (다양한 실리카 원과 결정화 촉진제를 이용한 나노크기의 TPA-Silicalite-1 제조)

  • Jung, Sang-Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.286-291
    • /
    • 2014
  • In this study, nanosized TPA-silicalite-1 was synthesized with a suitable molar composition of TPAOH: $SiO_2$: $H_2O$ for the development of zeolite ceramic membranes to utilize as gas separation. As silica sources, TEOS, LUDOX AS-40 and CAB-O-SIL were used with the starting material of TPAOH. $NaH_2PO_4$, and a variety of acids and bases were used as promoters after TPAOH, $SiO_2$, $H_2O$ gel synthesis. To decrease synthesis time, a two step temperature change method was applied to the synthesis of TPA-silicalite-1 at a low temperature. TPA-silicalite-1 synthesized was analyzed with XRD, SEM, BET and TGA. As a result, TPA-silicalite-1 powders with a particle size of 100 nm and a specific surface area of $416m^2/g$ were obtained as optimum synthesis conditions when the two stage temperature change method was used with $NaH_2PO_4$ as promoter.

Preparation of Silver Nanoparticles on the Poly(vinyl alcohol)/poly(ethylene glycol) Hydrogel (Poly(vinyl alcohol)/poly(ethylene glycol) 하이드로겔에서의 silver nanoparticles의 제조)

  • Park, Jong-Seok;Kim, Hyun-A;Choi, Jong-Bae;Gwon, Hui-Jeong;Lim, Youn-Mook;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.119-124
    • /
    • 2011
  • Silver nano-particles (AgNPs) have attracted much attention for centuries due to their unique optical properties, electrical conductivities, oxidative catalysis, and antibacterial effect. In this study, AgNPs have been prepared by using aqueous $AgNO_3$ solution in the poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) hydrogels. PVA and PEG powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make hydrogels. PVA/PEG hydrogels were dipped into $1.0{\times}10^{-2}M$ $AgNO_3$ solution for 1 hour. After that, the swollen hydrogels were irradiated by gamma-ray for the formation of AgNPs. FE-SEM is used to observe the formation of AgNPs as a function of the content of PEG and the irradiation dose. Also, AgNPs in the PVA/PEG hydrogels were monitored by UV-Vis. It is observed that the content of PEG and gamma-ray irradiation in the hydrogel is crucial to the formation of AgNPs. Finally, antibacterial tests indiacted that the hydrogel containing silver nanoparticle has antibacterial activity.