전기도금 방법으로 유리기판 위에 제작한 코일과 영구자석을 이용하여 초소형발전기를 제작하였다. 여러 크기의 코일 구조를 설계한 마스크를 제작하고, 이를 이용하여 MEMS 코일을 제작하였다. 그 중 두께가 $7{\mu}m$ 선폭이 $20{\mu}m$ 길이가 1.6 m인 코일을 선택하여 실험하였다. 광학현미경과 SEM을 사용하여 제작된 코일의 구조를 분석하였다. 또한 모터의 회전운동을 진동운동과 유사한 선형운동으로 변환하는 진동발생시스템을 제작하였고, 자석과 코일을 진동발생장치에 설치하고 진동을 발생시키면 교류 전압이 발생한다. 0.5Hz에서 8Hz까지 진동주파수를 변화시켜 특성을 측정하였다. 발생된 전압은 3Hz에서 106mV가 발생하였고, 6Hz에서 198mV가 발생하였다. 본 연구의 목적은 쓸모없이 버려지는 진동에너지를 유용한 전기에너지로 변환하는 초소형발전기 소자를 제작하는 것이다.
소자의 트랜지스터 밀도가 급속히 높아짐에 따라 소자 내부에서 발생하는 열 유속(heat flux) 또한 빠르게 증가하고 있다. 소자의 고열 문제는 소자의 성능과 신뢰성 감소에 크게 영향을 미친다. 기존의 냉각방법들은 이러한 고열문제를 해결하기 위해선 한계점에 다다랐고, 그 대안으로 liquid heat pipe, thermoelectric cooler, thermal Si via, 등 여러 냉각방법이 연구되고 있다. 본 실험에서는 직선형 마이크로채널과 TSV(through Si via)를 이용한 액체 냉각시스템을 연구하였다. 두 종류의 냉매(DI water와 ethylene glycol(70 wt%))와 3 종류의 금속 범프(Ag, Cu, Cr/Au/Cu)의 영향을 분석하였으며, 대류, 복사 및 액체 냉각으로 인한 총 열 유속을 계산하여 비교하였다. 냉각 전후의 냉각시스템의 표면온도는 적외선현미경을 통해 측정하였고, 마이크로채널 내 액체 흐름은 형광현미경을 이용하여 측정하였다. 총 열 유속은 ethylene glycol(70 wt%)의 경우 가열 온도 $200^{\circ}C$에서 $2.42W/cm^2$로 나타났으며 대부분 액체 냉각 효과에 의한 결과로 확인되었다.
나노잉크를 이용한 프린팅 기술은 기존의 리소그래피를 통한 절연체, 반도체 및 전도체의 패터닝 기술에 비해 비용절감, 대면적 기판 적용 가능성 및 회로의 유연성 등의 측면에서 장점을 가지므로 최근 크게 주목받고 있다. 이러한 프린팅 기술이 반도체 또는 디스플레이 제조 공정에 성공적으로 적용되기 위해서는 먼저 나노입자, 용매 및 첨가제로 구성된 나노잉크 또는 페이스트의 개발이 선행되어야 한다. 본 고에서는 이러한 반도체 및 디스플레이 적용을 위한 나노잉크의 청정 제조기술과 관련하여 최근의 연구 동향에 대하여 보고하고자 한다. 또한 나노잉크의 청정 제조기술과 관련한 구체적인 예를 설명하기 위하여 본 연구팀에서 개발한 청정 저온 $SiO_2$ 합성 기술을 소개하고자 하였다. 먼저 저온에서의 무폐수 청정공정을 통해 $SiO_2$ 나노입자를 제조하고, 이를 이용하여 프린팅 기술에 적용이 가능한 나노잉크를 제조하였다. 제조된 잉크를 유리 기판에 프린팅하여 다양한 특성 평가를 실시하였으며, 마지막으로 제조 공정상의 여러 시험변수가 프린팅된 필름의 전기적 특성에 미치는 영향에 대한 고찰을 통해 기술의 적용가능성을 평가하고자 하였다.
3차원 소자 집적을 위한 저온접합 공정 개발을 위해 Cu-Cu 열 압착 접합을 $300^{\circ}C$에서 30분간 실시하고 $N_2+H_2$, $N_2$분위기에서 전 후속 열처리 효과에 따른 정량적인 계면접착에너지를 4점굽힘시험법을 통해 평가하였다. 전 열처리는 100, $200^{\circ}C$의 $N_2+H_2$ 가스 분위기에서 각각 15분간 처리하였고, 계면접착에너지는 2.58, 2.41, 2.79 $J/m^2$로 전 열처리 전 후에 따른 변화가 없었다. 하지만 250, $300^{\circ}C$의 $N_2$ 분위기에서 1시간씩 후속 열처리 결과 2.79, 8.87, 12.17 $J/m^2$으로 Cu 접합부의 계면접착에너지가 3배 이상 향상된 결과를 얻을 수 있었다.
가로등 및 방폭등용 고출력 LED 조명 시스템의 광원으로서, 다수의 LED 칩이 실장된 50와트급 LED 어레이 모듈을 chip-on-board형 고방열 세라믹-메탈 하이브리드 기판을 사용하여 제작하였다. 고방열 세라믹-메탈 하이브리드 기판은 고열전도 알루미늄 금속 열확산 기판에 저온소결용 글라스-세라믹 절연 페이스트와 은 전극 페이스트를 후막 스크린 공정에 의해 도포한 다음, 건조 후 $515^{\circ}C$에서 동시소성하여 LED 칩을 실장할 세라믹 절연층과 은전극 회로층을 형성하여 제조하였다. 이 하이브리드 기판의 방열특성 평가를 위한 비교 샘플로서 기존의 에폭시 기반 FR-4 복합수지로 만든 써멀비아형 PCB 기판에도 동일한 디자인의 LED 어레이 모듈을 제작한 다음, 다중채널 온도측정장치와 열저항 측정기로 방열특성을 비교 분석하였다. 그 결과, $4{\times}9$ type LED 어레이 모듈에서 세라믹-메탈 하이브리드 기판의 열저항은 써멀비아형 FR-4 기판에 비하여 약 1/3로 나타났으며, 이것은 곧 방열성능이 적어도 3배 이상 높은 것으로 볼 수 있다.
신축성 기판은 신축성 전자소자의 신축성, 공정성, 내구성을 결정하는 매우 중요한 소재로서 신축성 전자소자를 개발함에 있어서 우선적으로 고려해야 된다. 특히 현재 사용되는 신축성 기판은 히스테리시스가 존재하여 센서 및 기타 응용에 많은 어려움이 있다. 본 연구에서는 신축성 소재 기판으로 사용되는 PDMS와 Ecoflex를 혼합한 PDMS-Ecoflex 하이브리드 신축성 기판을 제작하여 신축성과 히스테리시스 특성을 향상하고자 하였다. 인장 시험을 통하여 신축성 하이브리드 기판의 기계적 거동을 관찰하였으며, 투과도 측정을 통하여 투과도를 평가하였다. Ecoflex의 함량이 증가할수록 하이브리드 신축성 기판은 더 유연해지며, 탄성계수는 감소한다. 또한 PDMS 기판은 270% 변형률에서 파단이 발생한 반면, PDMS-Ecoflex 하이브리드 기판은 500%의 변형률까지 파단되지 않으며 우수한 신축성을 갖는 것을 알 수 있었다. 반복 인장시험에서 PDMS와 Ecoflex의 혼합비를 2:1로 제작된 기판은 히스테리시스가 발생하였다. 반면 1:1의 혼합비로 제작된 기판의 경우 50%, 100%의 변형률에서는 히스테리시스가 발생하지 않았다. 결론적으로 500% 이상의 신축성을 갖으면서 히스테리시스가 없은 기판을 제작하였다. 기판의 혼합비에 따른 광투과도 측정 결과, Ecoflex 기판의 투과도는 68.6% 이였으나, PDMS-Ecoflex 함량이 2:1, 1:1인 하이브리드 기판의 경우, 각각 78.6%, 75.4%의 투과율을 보이며, 향후 투명 신축성 기판으로서 개발 가능성을 보여주었다.
3 차원 패키징을 위한 저온 Cu-Cu직접 접합부의 계면접착에너지를 향상시키기 위해 Cu박막 표면에 대한 Ar/N2 2단계 플라즈마 처리 전, 후 Cu표면 및 접합계면에 대한 화학결합을 X-선 광전자 분광법(X-ray photoelectron spectroscopy)을 통해 정량화한 결과, 2단계 플라즈마 처리로 인해 Cu표면에 Cu4N이 형성되어 Cu산화를 효과적으로 억제하는 것을 확인하였다. 2단계 플라즈마 처리하지 않은 Cu-Cu시편은 표면 산화막의 영향으로 접합이 제대로 되지 않았으나 2단계 플라즈마 처리한 시편은 효과적인 표면 산화방지효과로 인해 양호한 Cu-Cu접합을 형성하였다. Cu-Cu직접접합 계면의 정량적 계면접착에너지를 double cantilever beam 시험방법 및 4점 굽힘(4-point bending, 4-PB) 시험방법을 통해 비교한 결과, 각각 1.63±0.24, 2.33±0.67 J/m2으로 4-PB 시험의 계면접착에너지가 더 크게 측정되었다. 이는 계면파괴역학의 위상각(phase angle)에 따른 계면접착에너지 증가 거동으로 설명할 수 있는데 즉, 4-PB의 계면균열선단 전단응력성분 증가로 인한 계면거칠기의 효과에 기인한 것으로 판단된다.
나노임프린트 리소그래피(Nanoimprint lithography, NIL) 공정은 패턴 형성을 위한 공정 단순성, 우수한 패턴 형성, 공정의 확장성, 높은 생산성 및 저렴한 공정 비용이라는 이유들로 인해 많은 관심을 받고 있다. 그러나, 기존의 NIL 기술들을 통해 금속 소재 상 구현할 수 있는 패턴의 크기는 일반적으로 마이크로 수준으로 제한적이다. 본 연구에서는, 다양한 두께의 금속 기판 표면에 마이크로/나노 스케일 패턴을 직접적으로 형성하기 위한 극압 임프린트 리소그래피(extremepressure imprint lithography, EPIL) 방법을 소개하고자 한다. EPIL 공정은 자외선, 레이저, 임프린트 레지스트 또는 전기적 펄스 등의 외부 요인을 사용하지 않고 고분자, 금속, 세라믹과 같은 다양한 재료의 표면에 신뢰성 있는 나노 수준의 패터닝을 가능하게 한다. 레이저 미세가공 및 포토리소그래피로 제작된 마이크로/나노 몰드는 상온에서 높은 하중 혹은 압력을 가해 정밀한 소성변형 기반 Al 기판의 나노 패터닝에 활용된다. 20 ㎛ 부터 100 ㎛까지 다양한 두께를 갖는 Al 기판 상 마이크로/나노 스케일의 패턴 형성을 보여주고자 한다. 또한, 다목적 EPIL 기술을 통해 금속 재료 표면에서 그 형상을 제어하는 방법 역시 실험적으로 증명된다. 임프린트 리소그래피 기반 본 접근법은 복잡한 형상이 포함된 금속 재료의 표면을 요구하는 다양한 소자 응용을 위한 나노 제조 방법에 적용될 수 있을 것으로 기대한다.
최근 스마트폰의 부품 수는 급격히 증가하고 있는 반면, PCB 기판의 크기는 지속적으로 감소하고 있다. 따라서 부품의 실장밀도를 개선하기 위해 PCB를 쌓아서 올리는 stacked PCB 구조의 3D 실장 기술이 개발되어 적용되고 있다. Stacked PCB에서 PCB 간 솔더 접합 품질을 확보하는 것이 매우 중요하다. 본 연구에서는 stacked PCB의 신뢰성을 향상시키기 위하여, 인터포저(interposer) PCB 및 sub PCB의 프리프레그의 물성, PCB 두께, 층수에 대한 휨의 영향을 실험과 수치해석을 통해 분석하였다. 또한 솔더 접합부의 응력을 최소화하기 위해 인터포저 패드 설계 구조에 따른 접합강도를 분석하였다. 인터포저 PCB의 휨은 프리프레그의 열팽창계수가 적을수록 감소하였으며, 유리전이온도(Tg)가 높을수록 감소하였다. 그러나 온도가 240℃ 이상이면 휨의 개선 효과는 크지 비교적 크지 않다. 또한 FR-4 프리프레그에 비하여 FR-5을 적용할 경우에 휨은 더 감소하였으며, 프리프레그의 층수와 두께가 높을수록 휨은 감소하였다. 한편 sub PCB의 경우, 휨은 프리프레그의 Tg 보다 열팽창계수가 더 중요한 변수임을 확인하였고, 두께를 증가시키는 것이 휨 감소에 효과적이었다. 솔더 접합력을 향상시키기 위하여 다양한 인터포저 패드 디자인을 적용하여 전단력 시험을 수행한 결과, 더미 패드를 추가하면 접합강도가 증가하였다. 또한 텀블 시험 결과, 더미 패드가 없을 때의 크랙 발생율은 26.8%이며, 더미 패드가 있으면 크랙 발생율은 0.6%로 크게 감소하였다. 본 연구의 결과는 stacked PCB의 설계 가이드라인 제시를 위한 유용한 결과로 판단된다.
나노임프린트 리소그래피(Nanoimprint lithography, NIL)는 저렴한 공정비용으로 고해상도 패턴을 제조할 수 있는 장점을 가지고 있기 때문에 마이크로 크기부터 나노스케일까지 패턴을 형성하는데 많이 사용되고 있다. 그러나, 대부분의 NIL 공정 기술은 기본적으로 임프린트용 레지스트 사용이 필요하고, 자외선, 열과 같은 외적인 요소 또한 필요로 하기 때문에, 타겟 소재를 패터닝하기 위해서 식각공정 또는 금속 증착 등의 추가적인 후공정이 요구된다. 그리고, 유연 필름이나 굴곡이 있는 소재를 패터닝 하기에 어려움이 있다. 본 연구에서는, 유연한 자성고무 복합재(rubber magnet composite, RMC) 기판 표면에 마이크로/나노 수준의 패턴을 상온에서 식각 공정 없이 형성할 수 있는 극압 임프린트 리소그래피(extreme pressure imprint lithography, EPIL) 공정을 소개하고자 한다. EPIL 기술은 금속, 고분자, 세라믹과 같은 다양한 재료의 표면에 직접적이고 영구적인 변형을 통해 초미세 구조물을 대면적으로 형성할 수 있는 공정으로서, 본 연구에서는 RMC 필름에 적용하여 서브 마이크로 크기의 패턴 형성이 가능함을 보여준다. 우리는 스트론튬계 페라이트와 염소화폴리에틸렌으로 구성된 유연한 RMC 기판 표면에 마이크로/나노 스케일의 다양한 패턴 크기 및 형상을 갖는 균일한 구조물을 형성할 수 있는 공정 및 결과물을 보여주고자 한다. RMC 필름 표면 상 미세한 패턴구현이 가능한 EPIL 공정은 미세한 자기 방향의 변화 및 제어를 요구하는 첨단 전자기소자 부품 제조에 널리 적용될 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.