• Title/Summary/Keyword: nano-grain

Search Result 343, Processing Time 0.028 seconds

Synthesis and Densification of Nanostructured $Al_2O_3-(Zro_2+3%Mol\;Y_2O_3)$ Bioceramics by High-Frequency Induction Heat Sintering

  • Kim, Sug-Won;Khalil, Khalil Abdel-razek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.527-528
    • /
    • 2006
  • Nanostructured Alumina - 20 vol% 3YSZ composites powder were synthesized by wet-milling technique. The starting materials were a mixture of Alumina micro-powder and 3YSZ nano-powders. Nano-crystalline grains were obtained after 24 h milling time. The nano-structured powder compacts were then processed to full density at different temperatures by high-frequency induction heat sintering (HFIHS). Effects of temperature on the mechanical and microstructure properties have been studied. $Al_2O_3-3YSZ$ composites with higher mechanical properties and small grain size were successfully developed at relatively low temperatures through this technique.

  • PDF

Composition Dependence on Structural and Optical Properties of MgxZn1-xO Thin Films Prepared by Sol-Gel Method

  • Kim, Min-Su;Noh, Keun-Tae;Yim, Kwang-Gug;Kim, So-A-Ram;Nam, Gi-Woong;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3453-3458
    • /
    • 2011
  • The $Mg_xZn_{1-x}O$ thin films with the various content ratio ranging from 0 to 0.4 were prepared by sol-gel spincoating method. To investigate the effects of content ratio on the structural and optical properties of the $Mg_xZn_{1-x}O$ thin films, scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out. With increase in the content ratio, the grain size of the $Mg_xZn_{1-x}O$ thin films was increased, however, at the content ratio above 0.2, MgO particles with cubic structure were formed on the surface of the $Mg_xZn_{1-x}O$ thin films, indicating that the Mg content exceeded its solubility limit in the thin films. The residual stress of the $Mg_xZn_{1-x}O$ thin films is increased with increase in the Mg mole fraction. In the PL investigations, the bandgap and the activation energy of the $Mg_xZn_{1-x}O$ thin films was increased with the Mg mole fraction.

Microstructure characterization and mechanical properties of Cr-Ni/ZrO2 nanocomposites

  • Sevinc, O zlem;Diler, Ege A.
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.313-323
    • /
    • 2022
  • The microstructure and mechanical properties of Cr-Ni steel and Cr-Ni steel-matrix nanocomposites reinforced with nano-ZrO2 particles were investigated in this study. Cr-Ni steel and Cr-Ni/ZrO2 nanocomposites were produced using a combination of high-energy ball milling, pressing, and sintering processes. The microstructures of the specimens were analyzed using EDX and XRD. Compression and hardness tests were performed to determine the mechanical properties of the specimens. Nano-ZrO2 particles were effective in preventing chrome carbide precipitate at the grain boundaries. While t-ZrO2 was detected in Cr-Ni/ZrO2 nanocomposites, m-ZrO2 could not be found. Few α'-martensite and deformation bands were formed in the microstructures of Cr-Ni/ZrO2 nanocomposites. Although nano-ZrO2 particles had a negligible impact on the strength improvement provided by deformation-induced plasticity mechanisms in Cr-Ni/ZrO2 nanocomposites, the mechanical properties of Cr-Ni steel were significantly improved by using nano-ZrO2 particles. The hardness and compressive strength of Cr-Ni/ZrO2 nanocomposite were higher than those of Cr-Ni steel and enhanced as the weight fraction of nano-ZrO2 particles increased. Cr-Ni/ZrO2 nanocomposite with 5wt.% nano-ZrO2 particles had almost twofold the hardness and compressive strength of Cr-Ni steel. The nano-ZrO2 particles were considerably more effective on particle-strengthening mechanisms than deformation-induced strengthening mechanisms in Cr-Ni/ZrO2 nanocomposites.

Analysis of Densification Behavior during Powder Equal Channel Angular Pressing using Critical Relative Density Model (임계상대밀도 모델을 이용한 분말 등통로각압축 공정시 분말 치밀화 거동)

  • Bok, Cheon-Hee;Yoo, Ji-Hoon;Yoon, Seung-Chae;Kim, Taek-Soo;Chun, Byong-Sun;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.365-370
    • /
    • 2008
  • In this study, bottom-up powder processing and top-down severe plastic deformation processing approaches were combined in order to achieve both full density and grain refinement with least grain growth. The numerical modeling of the powder process requires the appropriate constitutive model for densification of the powder materials. The present research investigates the effect of representative powder yield function of the Shima-Oyane model and the critical relative density model. It was found that the critical relative density model is better than the Shima-Oyane model for powder densification behavior, especially for initial stage.

Effect of Phase Stability on the Microstructure Development of α-SiAlON Ceramics

  • Kim, Joosun;Lee, Hae-Weon;Chen, I-Wei
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.118-122
    • /
    • 2003
  • Alpha-SiAlON ceramics having various compositions and modifying cations were investigated with respect to their phase stability, transformation kinetics. and resulting microstructures. Each composition was heat treated at 150$0^{\circ}C$ for 1h and measured the $\alpha$-SiAlON transformation. The phase-boundary composition in the single-phase $\alpha$-SiAlON region showed sluggish transformation from $\alpha$-$Si_3N_4$ to $\alpha$-SiAlON compared to the phase-center composition in the diagram. Using the different rare earth modifying cations, dependence of transformation kinetics on the phase stability in a fixed composition was also explained. By changing size of the stable u-phase region with exchanging cations, systematic change in transformation was observed. Transformation rate of $\alpha$-SiAlON at low temperature has an important role on controlling the final microstructure. Less transformation gives more chances to develop elongated grain in the microstructure.

Solid State Reduction of Haematite by Mechanical Alloying Process (기계적 합금화법에 의한 헤마타이트의 고상환원)

  • 이충효;홍대석;이만승;권영순
    • Journal of Powder Materials
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 2002
  • The efects of mechanical aloying conditions and the type of reducing agent on the solid state reductionof haematite $Fe_2O_3$ have been investigated at room temperature. Aluminium titanium zinc and copper were used as reducing agent. Nanocomposites of metal-oxide in which oxide particles with nano size were dispersed in Fe matrix were obtained by mechanical alloying of $Fe_2O_3$ with aluminium and titanium respectively However the reduction of $Fe_2O_3$ by coppe was not occurred Composite materials of iron with $Al_2O_3$ and $TiO_2$ were obtained from the system of $Fe_2O_3-Al$ and $Fe_2O_3-Ti$ after ball milling for 20 hrs and 30 hrs respectively. And the system of $Fe_2O_3-Zn$ resulted in the formationof FeO with ZnO after ball milling of 120 hrs. The final grain sizes of iron estimated by X-ray diffraction line-width measurement were in the ranges of 24~33 nm.

Effect of nano-Nb2O5 on the microstructure and mechanical properties of AZ31 alloy matrix nanocomposites

  • Huang, Song-Jeng;Kannaiyan, Sathiyalingam;Subramani, Murugan
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.407-416
    • /
    • 2022
  • In this study, the gravitating mechanical stir casting method was used to fabricating the Nb2O5/AZ31 magnesium matrix nanocomposites. Niobium pentoxide (Nb2O5) used as reinforcement with two different weight percentages (3 wt % and 6 wt %). The influence of Nb2O5 on microstructure and mechanical properties has been investigated. The microstructure analysis showed that the composites are mainly composed of the primary α-magnesium phase and phase β-Mg17Al12 secondary phase. The secondary phase was dispersed evenly along the grain boundary of the Mg phase. The Nb2O5/AZ31 nanocomposites revealed that the grain size and its lamellar shape (β-Mg17Al12) were gradually refined. Different strengthening mechanisms were assessed in terms of their contributions. Results showed that composite material properties of hardness, yield strength, and fracture study were directly related to Nb2O5 as a reinforcement. The maximum values of the mechanical properties were achieved with the addition of 3 wt% Nb2O5 on the AZ31 alloy.

Structural, optical, and electrical properties on Cu(In,Ga)$Se_2$ thin-films with Cu-defects and In/(In+Ga) ratio (Cu(In,Ga)$Se_2$ 박막의 Cu 결함 및 In, Ga 비율의 변화에 따른 구조적, 광학적, 전기적 특성 연구)

  • Jeong, A.R.;Kim, G.Y.;Jo, W.;Jo, H.J.;Kim, D.H.;Sung, S.J.;Kang, J.K.;Lee, D.H.;Nam, D.H.;Cheong, H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.47.1-47.1
    • /
    • 2011
  • We report on a direct measurement of two-dimensional chemical and electrical distribution on the surface of photovoltaic Cu(In,Ga)$Se_2$ thin-films using a nano-scale spectroscopic and electrical characterization, respectively. The Raman measurement reveals non-uniformed surface phonon vibration which comes from different compositional distribution and defects in the nature of polycrystalline thin-films. On the other hand, potential analysis by scanning Kelvin probe force microscopy shows a higher surface potential or a small work function on grain boundaries of the thin-films than on the grain surfaces. This demonstrates the grain boundary is positively charged and local built-in potential exist on grain boundary, which improve electron-hole separation on grain boundary. Local electrical transport measurements with scanning probe microscopy on the thin-films indicates that as external bias is increases, local current is started to flow from grain boundary and saturated over 0.3 V external bias. This accounts for carrier behavior in the vicinity of grain boundary with regard to defect states. We suggest that electron-hole separation at the grain boundary as well as chemical and electrical distribution of polycrystalline Cu(In,Ga)$Se_2$ thin-films.

  • PDF

ZnO Nanorods Grown on CdxZn1-xO Seed Layers with Various Cd Mole Fractions

  • Kim, Min-Su;Kim, Do-Yeob;Yim, Kwang-Gug;Kim, Soaram;Nam, Gi-Woong;Kim, Sung-O;Lee, Dong-Yul;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.189-193
    • /
    • 2012
  • ZnO nanorods were grown on the $Cd_xZn_{1-x}O$ seed layers with various Cd mole fractions by hydrothermal method. The effects of the Cd mole fraction for $Cd_xZn_{1-x}O$ seed layers on the structural and optical properties of the ZnO nanorods were investigated by scanning electron microscopy, X-ray diffraction, and photoluminescence. The narrowest full-width at half-maximum and largest grain size of the $Cd_xZn_{1-x}O$ seed layers, indicating improvement in crystal quality, were observed at the Cd mole fraction of 0.5. At the Cd mole fraction of 0.5, the largest enhancement in the density, the crystal quality, and the growth rate of the ZnO nanorods was observed while their appearance was not affected significantly by the incorporation of the Cd in the $Cd_xZn_{1-x}O$ seed layers. Consequently, the luminescent properties of the ZnO nanorods were enhanced. The largest improvement in the structural and optical properties of the ZnO nanorods was observed at the Cd mole fraction of 0.5.

Influence of the Fluorine-doping Concentration on Nanocrystalline ZnO Thin Films Deposited by Sol-gel Process

  • Yoon, Hyunsik;Kim, Ikhyun;Kang, Daeho;Kim, Soaram;Kim, Jin Soo;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.204.2-204.2
    • /
    • 2013
  • Wide band gap II-VI semiconductors have attracted the interest of many research groups during the past few years due to the possibility of their applications in light-emitting diodes and laser diodes. Among the II-VI semiconductors, ZnO is an important optoelectronic device material for use in the violet and blue regions because of its wide direct band gap (Eg ~3.37 eV) and large exciton binding energy (60 meV). F-doped ZnO (FZO) and undoped ZnO thin films were grown onto quartz substrate by the sol-gel spin-coating method. The doping level in the solution, designated by F/Zn atomic ratio of was varied from 0 to 5 in 1 steps. To investigate the effects of the structure and optical properties of FZO thin films were investigated using X-ray diffraction (XRD), UV-visible spectroscopy, and photoluminescence (PL). In the XRD, the residual stress, FWHM, bond length, and average grain size were changed with increasing the doping concentration. For the PL spectra, the high INBE/IDLE ratio of the FZO thin films doping concentration at 1 at.% than the other samples.

  • PDF