DOI QR코드

DOI QR Code

ZnO Nanorods Grown on CdxZn1-xO Seed Layers with Various Cd Mole Fractions

  • Kim, Min-Su (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, Do-Yeob (Holcombe Department of Electrical and Computer Engineering, Center for Optical Materials Science and Engineering Technologies, Clemson University) ;
  • Yim, Kwang-Gug (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, Soaram (Department of Nano Engineering, Inje University) ;
  • Nam, Gi-Woong (Department of Nano Engineering, Inje University) ;
  • Kim, Sung-O (Holcombe Department of Electrical and Computer Engineering, Center for Optical Materials Science and Engineering Technologies, Clemson University) ;
  • Lee, Dong-Yul (Epi R&D Team, Samsung LED Co. Ltd.) ;
  • Leem, Jae-Young (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
  • Received : 2011.09.15
  • Accepted : 2011.11.15
  • Published : 2012.01.20

Abstract

ZnO nanorods were grown on the $Cd_xZn_{1-x}O$ seed layers with various Cd mole fractions by hydrothermal method. The effects of the Cd mole fraction for $Cd_xZn_{1-x}O$ seed layers on the structural and optical properties of the ZnO nanorods were investigated by scanning electron microscopy, X-ray diffraction, and photoluminescence. The narrowest full-width at half-maximum and largest grain size of the $Cd_xZn_{1-x}O$ seed layers, indicating improvement in crystal quality, were observed at the Cd mole fraction of 0.5. At the Cd mole fraction of 0.5, the largest enhancement in the density, the crystal quality, and the growth rate of the ZnO nanorods was observed while their appearance was not affected significantly by the incorporation of the Cd in the $Cd_xZn_{1-x}O$ seed layers. Consequently, the luminescent properties of the ZnO nanorods were enhanced. The largest improvement in the structural and optical properties of the ZnO nanorods was observed at the Cd mole fraction of 0.5.

Keywords

References

  1. Lijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  2. Daun, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Nature 2001, 409, 66. https://doi.org/10.1038/35051047
  3. Huang, M.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897. https://doi.org/10.1126/science.1060367
  4. Kim, J. A.; Kim, I. K.; Kim, T.-W.; Moon, J.-H.; Kim, J. H. J. Nanosci. Nanotechnol. 2008, 8, 5485. https://doi.org/10.1166/jnn.2008.1166
  5. Li, M. K.; Wang, D. Z.; Ding, S.; Ding, Y. W.; Liu, J.; Liu, Z. B. Appl. Surf. Sci. 2007, 253, 4161. https://doi.org/10.1016/j.apsusc.2006.09.019
  6. Tao, Y.; Fu, M.; Zhao, A.; He, D.; Wang, Y. J. Alloy. Compd. 2010, 489, 99. https://doi.org/10.1016/j.jallcom.2009.09.020
  7. Caglar, Y.; Caglar, M.; Ilican, S.; Ates, A. J. Phys. D. 2009, 42, 065421. https://doi.org/10.1088/0022-3727/42/6/065421
  8. Zuniga-Perez, J.; Munoz-Sanjose, V.; Lorenz, M.; Benndorf, G.; Heitsch, S.; Spemann, D.; Grundmann, M. J. Appl. Phys. 2006, 99, 023514. https://doi.org/10.1063/1.2163014
  9. Hanawalt, J. D.; Rinn, H. W.; Frevel, L. K. Ind. Eng. Chem. Anal. Ed. 1938, 10, 457. https://doi.org/10.1021/ac50125a001
  10. Jeong, S.-H.; Park, K.-H.; Song, H.-J. J. Korean Phys. Soc. 2007, 50, 1692. https://doi.org/10.3938/jkps.50.1692
  11. Choi, Y.-S.; Lee, C.-G.; Cho, S. M. Thin Solid Films 1996, 289, 153. https://doi.org/10.1016/S0040-6090(96)08923-7
  12. Benhaliliba, M.; Benouis, C. E.; Aida, M. S.; Yakuphanoglu, F.; Sanchez Juarez, A. J. Sol-Gel Sci. Technol. 2010, 55, 335. https://doi.org/10.1007/s10971-010-2258-x
  13. Vaithianathan, V.; Hishita, S.; Park, J. Y.; Kim, S. S. J. Appl. Phys. 2007, 102, 086107. https://doi.org/10.1063/1.2800278
  14. Kim, K. K.; Jong, J. H.; Jung, H. J.; Choi, W. K.; Park, S. J.; Song, J. H. J. Appl. Phys. 2000, 87, 3573. https://doi.org/10.1063/1.372383
  15. You, J. B.; Zhang, X. W.; Fan, Y. M.; Yin, Z. G.; Gai, P. F.; Chen, N. F. Appl. Surf. Sci. 2009, 255, 5876. https://doi.org/10.1016/j.apsusc.2009.01.024
  16. Kim, M. S.; Yim, K. G.; Cho, M. Y.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Son, J.-S.; Leem, J.-Y. J. Korean Phys. Soc. 2011, 58, 515. https://doi.org/10.3938/jkps.58.515
  17. Kang, H. S.; Kang, J. S.; Kim, J. W.; Lee, S. Y. J. Appl. Phys. 2004, 95, 1246. https://doi.org/10.1063/1.1633343
  18. Tuomisto, F.; Saarinen, K.; Look, D. C.; Farlow, G. C. Phys. Rev. B 2006, 72, 085206. https://doi.org/10.1103/PhysRevB.72.085206
  19. Cho, M. Y.; Kim, M. S.; Choi, H. Y.; Yim, K. G.; Leem, J.-Y. Bull. Korean Chem. Soc. 2011, 32, 880. https://doi.org/10.5012/bkcs.2011.32.3.880
  20. Guo, B.; Qiu, Z. R.; Wong, K. S. Appl. Phys. Lett. 2003, 82, 2290. https://doi.org/10.1063/1.1566482
  21. Jeong, S. H.; Kim, B. S.; Lee, B. T. Appl. Phys. Lett. 2003, 82, 2625. https://doi.org/10.1063/1.1568543
  22. Yim, K. G.; Cho, M. Y.; Jeon, S. M.; Kim, M. S.; Leem, J.-Y. J. Korean Phys. Soc. 2011, 58, 520. https://doi.org/10.3938/jkps.58.520
  23. Kappertz, O.; Drese, R.; Wuttig, M. J. Vac. Sci. Technol. A 2002, 20, 2084. https://doi.org/10.1116/1.1517997

Cited by

  1. Effects of post-heated ZnO seed layers on structural and optical properties of ZnO nanostructures grown by hydrothermal method vol.9, pp.3, 2013, https://doi.org/10.1007/s13391-013-2190-7
  2. Surface modification of ZnO nanorods with CdS quantum dots for application in inverted organic solar cells: effect of deposition duration vol.29, pp.4, 2018, https://doi.org/10.1007/s10854-017-8185-7