• 제목/요약/키워드: nano-friction

검색결과 266건 처리시간 0.019초

기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구 (A Study on Nano/Micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique)

  • 조상현;윤성원;강충길
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.171-177
    • /
    • 2006
  • This study was performed as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-{\mu}m$-deep indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.51 GPa and 104 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$ ) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46- 0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined are a during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

초고경도 Ti-Al-Si-N 나노복합체 코팅막의 미세구조 및 트라이볼로지 거동에 관한 연구 (A Study on Microstructure and Tribological Behavior of Superhard Ti-Al-Si-N Nanocomposite Coatings)

  • 허성보;김왕렬
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.230-237
    • /
    • 2021
  • In this study, the influence of silicon contents on the microstructure, mechanical and tribological properties of Ti-Al-Si-N coatings were systematically investigated for application of cutting tools. The composition of the Ti-Al-Si-N coatings were controlled by different combinations of TiAl2 and Ti4Si composite target powers using an arc ion plating technique in a reactive gas mixture of high purity Ar and N2 during depositions. Ti-Al-Si-N films were nanocomposite consisting of nanosized (Ti,Al,Si)N crystallites embedded in an amorphous Si3N4/SiO2 matrix. The instrumental analyses revealed that the synthesized Ti-Al-Si-N film with Si content of 5.63 at.% was a nanocomposites consisting of nano-sized crystallites (5-7 nm in dia.) and a three dimensional thin layer of amorphous Si3N4 phase. The hardness of the Ti-Al-Si-N coatings also exhibited the maximum hardness value of about 47 GPa at a silicon content of ~5.63 at.% due to the microstructural change to a nanocomposite as well as the solid-solution hardening. The coating has a low friction coefficient of 0.55 at room temperature against an Inconel alloy ball. These excellent mechanical and tribological properties of the Ti-Al-Si-N coatings could help to improve the performance of machining and cutting tool applications.

Theoretical fabrication of Williamson nanoliquid over a stretchable surface

  • Sharif, Humaira;Hussain, Muzamal;Khadimallah, Mohamed Amine;Ayed, Hamdi;Taj, Muhammad;Bhutto, Javed Khan;Mahmoud, S.R.;Iqbal, Zafer;Ahmad, Shabbir;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • 제14권2호
    • /
    • pp.103-113
    • /
    • 2022
  • On the basis of fabrication, the utilization of nano material in numerous industrial and technological system, obtained the utmost significance in current decade. Therefore, the current investigation presents a theoretical disposition regarding the flow of electric conducting Williamson nanoliquid over a stretchable surface in the presence of the motile microorganism. The impact of thermal radiation and magnetic parameter are incorporated in the energy equation. The concentration field is modified by adding the influence of chemical reaction. Moreover, the splendid features of nanofluid are displayed by utilizing the thermophoresis and Brownian motion aspects. Compatible similarity transformation is imposed on the equations governing the problem to derive the dimensionless ordinary differential equations. The Homotopy analysis method has been implemented to find the analytic solution of the obtained differential equations. The implications of specific parameters on profiles of velocity, temperature, concentration and motile microorganism density are investigated graphically. Moreover, coefficient of skin friction, Nusselt number, Sherwood number and density of motile number are clarified in tabular forms. It is revealed that thermal radiation, thermophoresis and Brownian motion parameters are very effective for improvement of heat transfer. The reported investigation can be used in improving the heat transfer appliances and systems of solar energy.

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

도로변에서 발생되는 미세먼지로써 타이어와 도로 마모입자 채집과 분석 연구 (A Study on the Collection and Analysis of Tire and Road Wear Particles(TRWPs) as Fine Dust Generated on the Roadside)

  • 강태우;김혁중
    • 한국건설순환자원학회논문집
    • /
    • 제10권3호
    • /
    • pp.293-299
    • /
    • 2022
  • 본 연구에서는 도로변 미세먼지 내 타이어와 도로 마모입자의 정량화 분석과 타이어와 도로 마모입자 내 타이어 및 도로 성분 비율을 확인하기 위한 연구를 수행하였다. 이에 시간당 1,300여대 교통량을 갖는 충청남도 지자체중에서 C도시의 종합버스터미널 부근 정류장의 경계석 6곳에서 먼지 샘플을 채집하였다. 채집된 먼지 샘플 1,000 g에 대해 크기와 밀도 분리 수행한 결과 미세먼지 샘플 24 g과 타이어와 도로 마모입자 약 0.05 g이 분리되었다. 즉, 도로변 미세먼지에는 타이어와 도로 마모입자가 약 0.21 % 존재하는 것으로 분석되었다. 분리된 타이어와 도로 마모입자에 대해 주사전자현미경(SEM)을 이용하여 형상을 분석한 결과 지우개가루 형상이 관찰되었다. 또한, 도로변 미세먼지 내 존재하는 타이어와 도로 마모입자는 자동차 주행 중 타이어와 도로간 마찰에 의해 생성되어 도로변으로 분산되었기 때문에 열중량분석기(TGA)와 가스크로마토 질량분석기(GC/MS)를 이용하여 성분 분석을 수행하였다. 정량화 계산식을 통해 성분에 대한 타이어 및 도로 성분 비율을 도출한 결과 약 3:7로 분석되었다. 본 연구는 도로변 미세먼지 발생원의 구성원과 함량 분석을 위해 객관적이고 신뢰도 높은 분석 기법을 제시하였다. 추후, 도로건설과 타이어 소재의 미세먼지 저감 기술 확보와 개선 방안 확보를 위한 선행적 기초 연구로써 활용되기를 기대하고 지속적으로 더 많은 지역과 샘플 분석에 대한 통계 데이터를 확보하여 신뢰도 높은 연구를 수행하고자 한다.

설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009)

  • 한화택;이대영;김서영;최종민;백용규;권영철
    • 설비공학논문집
    • /
    • 제22권7호
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.