• Title/Summary/Keyword: nano-fiber

Search Result 450, Processing Time 0.027 seconds

A Study on the Fundamental Mechanical Properties of Hydrophobic Cementeous Mortar using Silane Admixtures (실란계 혼화제를 활용한 소수성 시멘트 모르타르의 기초물성 연구)

  • Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.79-86
    • /
    • 2018
  • In this study, emulsion type hydrophobic admixture was prepared by mixing polyvinyl alcohol surfactant, polymethyl hydro-siloxane and meta kaolin, and the compressive strength and mechanical properties such as permeability and contact angle test of the mortar were evaluated. The developed hydrophobic admixture showed no decrease in strength and the mortar specimen with magnesium oxide developed the early strength. In the case of permeability, total seepage was significantly decreased when the hydrophobic admixture was directly mixed with the mortar, but the effect of meta kaolin contained in hydrophobic admixture was not significant. The surface of specimens coated with hydrophobic admixture shows that the contact angle on the surface was highly increased compared with reference mortar specimen. Further researches to obtain the optimum mix proportion of the PVA fiber, nano-silica and meta kaolin for producing the super-hydrophobic surface are required.

Printing Technology of Nano fiber under 900nm (900nm 이하급 나노섬유의 현장적용 날염기술)

  • Yong, Kwang-Joong;Lee, Beom-Soo;Lee, Hee-Jun;Hwang, Tea-Yeon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.83-83
    • /
    • 2011
  • 나노섬유는 마이크로 섬유에 비해 $10^3$배 정도의 넓은 표면적을 가지며, 다른 섬유와 비교하여 유연성, 투습성과 같은 특성이 우수하다. 나노섬유의 제조방법은 여러 가지가 있으나, 상용화의 가능성, 적용 고분자의 다양성, 제조공정의 단순성, 다양한 제품기술에의 응용성 등을 고려하여 선택하여야 한다. 나노섬유의 제조기술은 방법에 따라 전기방사, 복합방사, 멜트블로운 공정, 에어레이드 공정, 습식 공정 등으로 나눌 수 있다. 전기방사 등 나노섬유를 대량생산하여 상용화하려는 노력을 지속적으로 하고 있으나 나노섬유의 염색가공에 관련되어 기술적 한계로 제품전개에 많은 어려움을 겪고 있다. 그리하여 본 연구에서는 나노섬유 단독으로 제품화하기에는 강도 등의 문제로 PET에 워터펀칭한 복합소재로 개발하여 900nm 이하의 나노섬유에 대한 최적의 날염조건과 현장적용 생산기술을 개발하고자 하였다. 나노섬유 복합소재에 대하여 Brown, Red, Blue, Black 색상의 안료와 Urethane, Rubber, Acrylic, Eco Binder를 사용하여 날염 실험하였으며, 최적의 조건으로 현장생산에 적용하여 생산하였다. 안료의 고착성을 높여 날염성과 염색견뢰도를 증진시키기 위하여 원적외선 열처리기를 개발하여 현장생산에 접목시켰다. 원적외선 열처리기는 벙커C유 또는 가스 등을 사용하는 텐터나 증열기와는 다르게 전기를 에너지원으로 하여 원적외선 램프를 이용한 건열시스템의 형태로 저공해 및 그린 형태의 열처리기 시스템으로, 섬유에 대한 원적외선의 조사거리, 원적외선 램프의 간격, 적용 온도, 원단이송 속도 등에 따른 최적의 원적외선 열처리기 날염조건을 설정하였다. 바인더에 따른 날염성은 우레탄계 바인더를 사용하였을 경우에 가장 선명하고 깊은 색상을 보였으며, 아크릴계 바인더의 경우가 가장 낮은 색상을 보였으며 염색견뢰도는 대체적으로 양호한 결과를 얻었다. 그리고, 최근 환경적인 추세에 맞추어 에코 바인더를 사용하여 날염한 결과 염색성과 내구성 등은 우레탄계와 아크릴계 바인더의 중간 정도의 결과를 보였다.

  • PDF

A Study on Dissolution Characteristic of Sea-Islands composite type Polyester Ultramicro-Nano Fiber (해도형 울트라마이크로-나노급 폴리에스테르 섬유의 용출 특성)

  • Jeong, Cheon-Hee;Min, Mun-Hong
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.104-104
    • /
    • 2011
  • 섬유가 가늘어지면 굽힘 강성이 저하되고 비표면적이 증가하는 등의 많은 특징을 발휘한다. 특히 폴리에스테르 극세사는 실크와 같은 외관, 유연한 태 등의 감각적으로 우수한 특성을 가지므로 제품의 태에 대한 질적 향상을 요구하는 소비자의 욕구와 맞아떨어져 다양한 용도로 전개되고 있다. 초극세 섬유를 제조하는 방법은 통상적으로 멜트블로운법, 플래쉬법, 전기방사법 그리고 해도형 복합방사법의 4가지로 분류된다. 그중 해도형 복합방사법은 가장 안정적인 방법으로 PET기준으로 0.01데니어 급까지 상용화가 되어 있다. 해도형 복합섬유의 개발에 있어서 중요한 것 중에 하나가 해성분 폴리머의 용출기술이다. 초극세화를 목적으로 해성분인 변성폴리에스테르를 제거시키기 위해서 실시되는 알칼리(NaOH)에 의한 감량공정은 그 처리조건에 따라서 초극세사로 잔존해야하는 도성분의 정규 폴리에스테르까지 손상시킬 수 있기 때문에 균일한 용출조건의 확립은 매우 중요하다. 그러나 초극세화가 진행될수록 알칼리가 필라멘트의 가운데 영역까지 균일하게 침투하기가 어려우며 감량된 도성분도 비표면적이 증가하기 때문에, 해성분의 균일한 용출 및 감량을 위한 안정적인 조건을 선정하기가 어렵다. 따라서 본 연구에서는 울트라마이크로-나노급(800nm) 해도형 폴리에스테르 섬유를 이용하여 해성분 용출공정에서 정규 폴리에스테르를 손상시킬 수 있는 알칼리 감량 조건을 완화시키면서 기존과 동일한 감량 효과를 얻을 수 있는 용출 공정을 확립하고자 한다. 이를 위하여 유기산을 이용한 전처리 조건 및 알칼리 감량공정에서 NaOH의 농도, 처리시간, 처리온도의 변화가 울트라마이크로-나노급 해도형 섬유의 용출에 미치는 영향에 대하여 검토하였다.

  • PDF

The study of electrode for energy storaging at supercapacitor system using nano carbon fiber material (나노 탄소재료를 이용한 에너지 저장형 슈퍼커패시터용 전극 제조)

  • Hwang, Sung-Ik;Choi, Won-Kyung;Momma, Toshiyukl;Osaka, Tetsuya;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.683-686
    • /
    • 2004
  • In recent years, the supercapacitor and hybrid capacitor have related with substitutional energy source focused of many scientists because of their usage in power sources for electric vehicles, computers and other electric devices. The storage energy of electrical charge is based on electrostatic interactions in the electric double layer at the electrode/electrolyte interface, resulting in high rate capability and long cycle performance compared with batteries based on Faradaic electrode reactions. So we have been considered to carbon nanofibers as the ideal material for supercapacitors due to their high utilization of specific surface area, good conductivity, chemical stability and other advantages. In this work, we aimed to find out that the capacitance have increased because of electrochemical capacitance to provide by carbon nanofibers. Also carbon nanofibers based on chemical method and water treatment have been resulted larger capacitances and also exhibit better electrochemical behaviors about 15% than before of nontreated state. And also optical observations with treated and nontrteated carbon nanofibers discussed by the TEM, SEM, EDX, BET works and specific surface area analyzer. Their results also focused on the surface area of electrode and electrical capacitance was also improved by the effect of surface treatments.

  • PDF

Development of Thermoplastic Carbon Composite Bipolar Plates for High-temperature PEM Fuel Cells (고온 양성자 교환막 연료전지용 열가소성 탄소 복합재료 분리판 개발)

  • Lim, Jun Woo;Kim, Minkook;Lee, Dai Gil
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.243-248
    • /
    • 2016
  • Although thermoset carbon fiber composite bipolar plates not only have high mechanical properties but also high corrosion resistance in acid environment, high manufacturing cost and low bulk electrical conductivity are the biggest obstacle to overcome. In this research, thermoplastic polymer is employed for the matrix of carbon composite bipolar plate to increase both the manufacturing productivity and bulk electric conductivity of the bipolar plate. In order to increase the electrical conductivity and strength, plain type carbon fabric rather than chopped or unidirectional fibers is used. Also nano particles are embedded in the thermoplastic matrix to increase the bulk resistance of the bipolar plate. The area specific resistance and the mechanical strength of the developed bipolar plate are measured with respect to the environmental temperature and stack compaction pressure.

Design and Fabrication of Split Hopkinson Pressure Bar for Dynamic Mechanical Properties of Self-reinforced Polypropylene Composite (폴리프로필렌 자기 보강 복합재의 동적 물성 구축을 위한 Split Hopkinson Pressure Bar의 설계 및 제작)

  • Kang, So-Young;Kim, Do-Hyoung;Kim, Dong-Hyun;Kim, Hak-Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.221-226
    • /
    • 2018
  • The Split Hopkinson Pressure Bar(SHPB) has been the most widely used apparatus to characterize dynamic mechanical behavior of materials at high strain rates between $100s^{-1}$ and $10,000s^{-1}$. The SHPB test is based on the wave propagation theory which was developed to give the stress, strain and strain rate in the specimen using the strains measured in the incident and transmission bars. In this study, the SHPB was directly designed and fabricated for the dynamic mechanical properties of fiber reinforced plastic (FRP) composites. In addition, this apparatus was verified for the validity by comparing the strain data obtained through the high speed camera and Digital Image Correlation(DIC) during the high strain rate compression test of the self-reinforced polypropylene composite (SRPP) specimen.

Investigation of Properties of Synthetic Microparticles for a Retention and Drainage System

  • Lee, Sa-Yong;Hubbe Martin A.;Park, Sun-Kyu
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.61-66
    • /
    • 2006
  • Over the past 20 years there has been a revolution involving the use of nano or macro size particles as drainage and retention systems during the manufacture of paper. More recently a group of patented technologies called Synthetic Mineral Microparticles (SMM) has been invented and developed. This system has potential to further promote the drainage of water and retention of fine particles during papermaking. Prior research, as well as our on preliminary research showed that the SMM system has advantages in both of drainage and retention compared with montmorillonite (bentonite), which one of the most popular materials presently used in this kind of application. In spite of the demonstrated advantages of this SMM system, the properties and activity of SMM particles in the aqueous state have not been elucidated yet. Streaming current titrations with highly charged polyelectrolytes were used to measure the charge properties of SMM and to understand the interactions among SMM particles, fibers, fiber fines, and cationic polyacrylamide (cPAM) as a retention aid. It was found that pH profoundly affects the charge properties of SMM, due to the influence of Al-ions and the Si-containing particle surface. SEM pictures, characterizing the morphology, geometry and size distribution of SMM, showed an broad distribution of primary particle size. Dilution of SMM mixturee appeared to wash out particles smaller than 100 nm from the surface of larger particles, which themselves appeared to be composed of fused primary particles. DSC thermoporometry was used to measure the size distribution of nanopores within SMM particles.

  • PDF

A Disposable Grating-Integrated Multi-channel SPR Sensor Chip for Detection of Biomolecule (회절격자가 집적된 일회용 다중채널 SPR 생체분자 검출 칩)

  • Jin, Young-Hyun;Cho, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.147-154
    • /
    • 2009
  • This paper presents a grating~integrated SPR (Surface Plasmon Resonance) sensor chip for simple and inexpensive biomolecule detection. The grating-integrated SPR sensor chip has two sensing channels having a nano grating for SPR coupling. An external mirror is used for multi channel SPR sensing. The present sensor chip replaces bulky and expensive optical components, such as fiber-optic switches or special shaped prisms, resulting in a simple and inexpensive wavelength modulated multi-channel SPR sensing system. We fabricate a SPR sensor chip integrated with 835 nm-pitch gratings by a micromolding technique to reduce the fabrication cost. In the experimental characterization, the refractive index sensitivity of each sensing channel is measured as $321.8{\pm}8.1nm$/RI and $514.3{\pm}8.lnm$/RI, respectively. 0.5uM of the target biomolecule (streptavidin) was detected by a $1.13{\pm}0.16nm$ shift of the SPR dip in the 10%-biotinylated sample channel, while the SPR dip in the reference channel for environmental perturbation monitoring remained at the same position. From the experimental results, multi-channel biomolecule detection capability of the present grating-integrated SPR sensor chip has been verified. On the basis of the preliminary experiments, we successfully measured the binding reaction rate for the $2\;nM{\sim}200\;nM$ monoclonal-antibiotin, thus verifying biomolecule concentration detectability of the present SPR sensor chip. The binding reaction rates measured from the present SPR sensor chip agredd well with those from a commercialized SPR sensor.

Characteristics of Electrospun Poly(methyl methacrylate) Nanofibers Embedding Multi-Walled Carbon Nanotubes(MWNTs) (다중벽 탄소 나노튜브가 분산된 Poly(methyl methacrylate) 고분자 용액의 전기방사연구)

  • Kim Dong Ouk;Lee Dai-Hoi;Yoon Seong-sik;Lee Sun-Ae;Nam Jae Do
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.90-94
    • /
    • 2006
  • An electrospinning process was used to fabricate poly(methyl methacrylate) (PMMA) nanofibers embedding multi-walled carbon nanotubes(MWNTs). SEM images showed that the nanofiber surface and structural morphology depended on solvent types (dimethyl formamide, chlor-form and toluene) and carbon nanotube contents (0.5 and $3.0\;wt\%$). Nano-fiber alignments could be controlled by adjusting the electrodes configuration at collector sites. Relationship between carbon nanotube and PMMA nanofiber was studied with radius of gyration of polymer chain and carbon nanotube sizes. As the carbon nanotube content ratio increased, the number of bead increased.

Recent Progress in Qantum Dots Containing Thin Film Composite Membrane for Water Purification (양자점이 합체된 복합 박막을 이용한 정수의 최근 발전)

  • Park, Shinyoung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.293-306
    • /
    • 2020
  • Increasing harmful effects of climate change, such as its effect on water scarcity, has led to a focus on developing effective water purification methods to obtain pure water. Additionally, rising levels of water pollution is increasing levels of environmental degradation, calling for sources of water treatment to remove contaminants. To purify water, osmotic processes across a semipermeable membrane can take place, and recent studies are showing that incorporating nanoparticles, including carbon quantum dots (CQDs), graphene carbon dots (GQDs), and graphene oxide quantum dots (GOQDs) are making thin film composite (TFC) membranes more effective by increasing water flux while maintaining similar levels of salt rejection, increasing the hydrophilicity of the membrane surface, showing bactericidal properties, exhibiting antifouling properties to prevent accumulation of bacteria or other microorganisms from reducing the effectiveness of the membrane, and more. In the review, the synthesis process, applications, functionality, properties, and the role of several types of quantum dots are discussed in the composite membrane for water purification.