• 제목/요약/키워드: nano-composite powder

검색결과 162건 처리시간 0.028초

탄소나노튜브 복합체 취급 작업자의 공기 중 입자상 물질 노출 특성 (Characteristics of Workers' Exposure to Aerosolized Particles during the Production of Carbon Nanotube-enabled Composites)

  • 권지운;김성호;장미연
    • 한국산업보건학회지
    • /
    • 제30권1호
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: The purpose of this case study is to assess workers' exposure to carbon nanotubes(CNTs) and characterize particles aerosolized during the process of producing CNT-enabled polytetrafuoroethylene(PTFE) composites at a worksite in Korea. Methods: Personal breathing zone and area samples were collected for determining respirable concentrations of elemental carbon(EC) using NIOSH(National Institute for Occupational Safety and Health) Method 5040. Personal exposure to nano-sized particles was measured as the number concentration and mean diameter using personal ultrafine particle monitors. The number concentration by particle size was measured using optical particle sizers(OPS) and scanning mobility particle sizers(SMPS). Transmission electron microscopy (TEM) area samples were collected on TEM grids and analyzed to characterize the size, morphology, and chemistry of the particles. Results: Respirable EC concentrations ranged from 0.04 to 0.24 ㎍/㎥, which were below 23% of the exposure limit recommended by NIOSH and lower than background concentrations. Number concentrations by particle size measured using OPS and SMPS were not noticeably elevated during CNT-PTFE composite work. Instant increase of number concentrations of nano-sized particles was observed during manual sanding of CNT-PTFE composites. Both number concentrations and mean diameters did not show a statistically significant difference between workers handing CNT-added and not-added materials. TEM analyses revealed the emission of free-standing CNTs and CNT-PTFE aggregate particles from the powder supply task and composite particles embedded with CNTs from the computer numerical control(CNC) machining task with more than tens of micrometers in diameter. No free-standing CNT particles were observed from the CNC machining task. Conclusions: Significant worker exposure to respirable CNTs was not found, but the aerosolization of CNTs and CNT-embedded composite particles were observed during handing of CNT-PTFE powders and CNC machining of CNT-PTFE composites. Considering the limited knowledge on the toxicity of CNTs and CNT composite particles to date, it seems prudent to take a precautionary approach for the protection of workers' health.

ZnS 형광체 분말제조를 위한 기계적합금화법의 응용 연구 (Application of Mechanical Alloying Method on the Fabrication of Zinc Sulfide Photo-luminescence Powders)

  • 안인섭;정우현;배승열;성택경;박동규
    • 한국분말재료학회지
    • /
    • 제12권4호
    • /
    • pp.279-283
    • /
    • 2005
  • In this study, the ZnS composite powders for host material in phosphor was synthesized in situ by mechanical alloying. As the mechanical alloying time increases, particle size of ZnS decreases. ZnS powders of $1.85\;\mu{m}$ in a mean size was fabricated by mechanical alloying for 10h. The crystal structures of ZnS powders were investigated by X-ray diffraction and the photo-luminescence properties was evaluated with the optical spectra analyzer. The steady state condition of mechanically alloyed ZnS was obtained as a mean particle size of $2\;\mu{m}$ in 5h milling. The sphalerite and wurtize structures coexist in the ZnS mechanically alloyed for 5h. The ZnS powder mechanically alloyed for 10h grows to the sphalerite structure. And the strong emission peaks of ZnS are observed at 480 nm wave length at the powders of mechanically alloyed for 10h, but the sphalerite and wurtize structures in ZnS coexist and emission peaks are not appeared at the powders of mechanically alloyed for 10h.

Ti-Al-Si-N 박막 제작을 위한 합금 타겟 제조 및 박막의 기계적 특성 (Fabrication of Alloy Target for Formation of Ti-Al-Si-N Composite Thin Film and Their Mechanical Properties)

  • 이한찬
    • 한국전기전자재료학회논문지
    • /
    • 제29권10호
    • /
    • pp.665-670
    • /
    • 2016
  • Prevailing dissemination of machine tools and cutting technology have caused drastic developments of high speed dry machining with work materials of high hardness, and demands on the high-hardness-materials with high efficiency have become increasingly important in terms of productivity, cost reduction, as well as environment-friendly issue. Addition of Si to TiAlN has been known to form nano-composite coating with higher hardness of over 30 GPa and oxidation temperature over $1,000^{\circ}C$. However, it is not easy to add Si to TiAlN by using conventional PVD technologies. Therefore, Ti-Al-Si-N have been prepared by hybrid process of PVD with multiple target sources or PVD combined with PECVD of Si source gas. In this study, a single composite target of Ti-Al-Si was prepared by powder metallurgy of MA (mechanical alloying) and SPS (spark plasma sintering). Properties of he resulting alloying targets were examined. They revealed a microstructure with micro-sized grain of about $1{\sim}5{\mu}m$, and all the elements were distributed homogeneously in the alloying target. Hardness of the Ti-Al-Si-N target was about 1,127 Hv. Thin films of Ti-Al-Si-N were prepared by unbalanced magnetron sputtering method by using the home-made Ti-Al-Si alloying target. Composition of the resulting thin film of Ti-Al-Si-N was almost the same with that of the target. The thin film of Ti-Al-Si-N showed a hardness of 35 GPa and friction coefficient of 0.66.

고체산화물 연료전지를 위한 플라즈마 용사코팅 Ni/YSZ 음극 복합체의 특성평가 (Characterization of Ni/YSZ Anode Coating for Solid Oxide Fuel Cells by Atmospheric Plasma Spray Method)

  • 박수동;윤상훈;강기철;이창희
    • Journal of Welding and Joining
    • /
    • 제26권4호
    • /
    • pp.50-54
    • /
    • 2008
  • In this research, anode for SOFC has been manufactured from two different kinds of feedstock materials through thermal spraying process and the properties of the coatings were characterized and compared. One kind of feedstock was manufactured from spray drying method which includes nano-components of NiO, YSZ (300 nm) and graphite. And the other is manufactured by blending the micron size NiO coated graphite, YSZ and graphite powders as feedstock materials. Microstructure, mechanical properties and electrical conductivity of the coatings as-sprayed, after oxidation and after hydrogen reduction containing nano composite which is prepared from spray-dried powders were evaluated and compared with the same properties of the coatings prepared from blended powder feedstock. The coatings prepared from the spray dried powders has better properties as they provide larger triple phase boundaries for hydrogen oxidation reaction and is expected to have lower polarization loss for SOFC anode applications than that of the coatings prepared from blended feedstock. A maximum electrical conductivity of 651 S/cm at $800^{\circ}C$ was achieved for the coatings from spray dried powders which much more than that of the average value.

A facile chemical synthesis of a novel photo catalyst: SWCNT/titania nanocomposite

  • Paul, Rima;Kumbhakar, Pathik;Mitra, Apurba K.
    • Advances in nano research
    • /
    • 제1권2호
    • /
    • pp.71-82
    • /
    • 2013
  • A simple chemical precipitation technique is reported for the synthesis of a hybrid nanostructure of single-wall carbon nanotubes (SWCNT) and titania ($TiO_2$) nanocrystals of average size 5 nm, which may be useful as a prominent photocatalytic material with improved functionality. The synthesized hybrid structure has been characterized by transmission electron microscopy (HRTEM), energy-dispersive X-ray analysis (EDAX), powder X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. It is clearly revealed that nearly monodispersed titania nanocrystals (anatase phase) of average size 5 nm decorate the surfaces of SWCNT bundles. The UV-vis absorption study shows a blue shift of 16 nm in the absorbance peak position of the composite material compared to the unmodified SWCNTs. The photoluminescence study shows a violet-blue emission in the range of 325-500 nm with a peak emission at 400 nm. The low temperature electrical transport property of the synthesized nanomaterial has been studied between 77-300 K. The DC conductivity shows semiconductor-like characteristics with conductivity increasing sharply with temperature in the range of 175-300 K. Such nanocomposites may find wide applications as improved photocatalyst due to transfer of photo-ejected electrons from $TiO_2$ to SWCNT, thus reducing recombination, with the SWCNT scaffold providing a firm and better positioning of the catalytic material.

Novel process of rare-earth free magnet and thermochemical route for the fabrication of permanent magnet

  • Choi, Chul-Jin
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2013년도 자성 및 자성재료 국제학술대회
    • /
    • pp.89-89
    • /
    • 2013
  • Rare earth (RE) - transition metal based high energy density magnets are of immense significance in various engineering applications. $Nd_2Fe_{14}B$ magnets possess the highest energy product and are widely used in whole industries. Simultaneously, composite alloys that are cheap, cost effective and strong commercially available have drawn great attention, because rare-earth metals are costly, less abundant and strategic shortage. We designed rare-earth free alloys and fabrication process and developed novel route to prepare $Nd_2Fe_{14}B$ powders by wet process employing spray drying and reduction-diffusion (R-D) without the use of high purity metals as raw material. MnAl-base permanent magnetic powders are potentially important material for rare-earth free magnets. We have prepared the nano-sized MnAl powders by plasma arc discharge and micron-sized MnAl powders by gas atomization. They showed good magnetic property, compared with that from conventional processes. $Nd_2Fe_{14}B$ powders with high coercivity of more than 10 kOe were successfully synthesized by adjusting R-D step, followed by precise washing system. It is considered that this process can be applied for the recycling of RE-elements extracted from ewaste including motors.

  • PDF

LPS-SiC 세라믹스 제조특성에 미치는 소결온도의 영향 (Effects of Sintering Temperature on Fabrication Properties of LPS-SiC Ceramics)

  • 박이현;정헌채;김동현;윤한기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.204-209
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, $SiC_f/SiC$ composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing fiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of $SiC_f/SiC$ composites by hot pressing method. In the present work, Monolithic LPS-SiC was fabricated by hot pressing method in Ar atmosphere at 1760 $^{\circ}C$, 1780 $^{\circ}C$, 1800 $^{\circ}C$ and 1820 $^{\circ}C$ under 20 MPa using $Al_2O_3-Y_2O_3$ system as sintering additives in order to low sintering temperature. The starting powder was high purity ${\beta}-SiC$ nano-powder with an average particle size of 30 nm. Monolithic LPS-SiC was evaluated in terms of sintering density, micro-structure, flexural strength, elastic modulus and so on. Sintered density, flexural strength and elastic modulus of fabricated LPS-SiC increased with increasing the sintering temperature. In the micro-structure of this specimen, it was found that grain of sintered body was grown from 30 nm to 200 nm.

  • PDF

산화 아연 나노 입자로 도포된 마이카의 합성 및 특성 규명 (Synthesis and Characterization of Mica Coated with Zinc Oxide Nanoparticles)

  • 길현석;김용호;박민영;이석우
    • 공업화학
    • /
    • 제23권3호
    • /
    • pp.271-278
    • /
    • 2012
  • 본 연구에서는 마이카와 산화 아연을 이용하여 복합 재료를 제조하고, 이를 자외선 차단 크림에 응용하는 연구를 수행하였다. 먼저 마이카와 산화 아연을 각각 3-aminopropyltrimethoxysilane (APTMS)으로 처리하여 표면에 아민기를 생성시켰다. 아민기가 붙은 마이카를 1,4-phenylenediisothiocyanate (PDC)와 반응시켜 표면에 -N=C=S 작용기를 활성화시킨 후, 아민기가 붙어있는 산화 아연과 결합시켜 산화 아연으로 덮인 마이카 복합 재료를 합성하였다. 원소 분석, EDS 분석, 열 중량 분석, SEM 이미지 분석, 형광 이미지 분석, 제타 전위 측정, X-선 회절 분석, DRS UV/Vis 분석을 통하여 고체 생성물의 특성을 규명하였다. 최종적으로 표준 프로토콜로 제조된 자외선 차단 크림의 파장에 따른 투과도를 280~400 nm 범위에서 측정하여 자외선 차단 효과를 확인하였다.

Effect of Core Morphology on the Decomposition of CCI₄ over the Surface of Core/Shell Structured Fe₂O₃/MgO Composite Metal Oxides

  • 김해진;강진;박동곤;권호진;Kenneth J. Klabunde
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권8호
    • /
    • pp.831-840
    • /
    • 1997
  • Core/shell structured composite metal oxides of Fe2O3/MgO were prepared by thermal decomposition of Fe(acac)3 adsorbed on the surface of MgO cores. The morphology of the composites conformed to that of the MgO used as the cores. Broad powder X-ray diffraction peaks shifted toward larger d, large BET surface area (∼350 m2/g), and the size of crystalline domains in nano range (4 nm), all corroborate to the nanocrystallinity of the Fe2O3/MgO composite which was prepared by using nanocrystalline MgO as the core. By use of microcrystalline MgO as the core, microcrystalline Fe2O3/MgO composite was prepared, and it had small BET surface area of less than 35 m2/g. AFM measurements on nanocrystalline Fe2O3/MgO showed a collection of spherical aggregates (∼80 nm dia) with a very rough surface. On the contrary, microcrystalline Fe2O3/MgO was a collection of plate-like flat crystallites with a smooth surface. The nitrogen adsorption-desorption behavior indicated that microcrystalline Fe2O3/MgO was nonporous, whereas nanocrystalline Fe2O3/MgO was mesoporous. Bimodal distribution of the pore size became unimodal as the layer of Fe2O3 was applied to nanocrystalline MgO. The macropores in a wide distribution which the nanocrystalline MgO had were absent in the nanocrystalline Fe2O3/MgO. The decomposition of CCl4 was largily enhanced by the overlayer of Fe2O3 on nanocrystalline MgO making the reaction between nanocrystalline Fe2O3/MgO and CCl4 be nearly stoichiometric. The reaction products were environmentally benign MgCl2 and CO2. Such an enhancement was not attainable with the microcrystalline samples. Even for the nanocrystalline MgO, the enhancement was not attained, if not with the Fe2O3 layer. Without the layer of Fe2O3, it was observed that the nanocrystalline domain of the MgO transformed into microcrystalline one as the decomposition of CCl4 proceeded on its surface. It appeared that the layer of Fe2O3 on the particles of nanocrystalline Fe2O3/MgO blocked the transformation of the nanocrystalline domain into microcrystalline one. Therefore, in order to attain stoichiometric reaction between CCl4 and Fe2O3/MgO core/shell structured composite metal oxide, the morphology of the core MgO has to be nanocrystalline, and also the nanocrystalline domains has to be sustained until the core was exhausted into MgCl2.

폴리피롤/설폰화 폴리(2,6-디메틸-1,4-페닐렌 옥사이드) 복합전극의 제조 및 특성 (Preparation and Characteristics of Polypyrrole/sulfonated Poly(2,6-dimethyl-1,4-phenylene oxide) Composite Electrode)

  • 허양일;정흥련;이완진
    • 폴리머
    • /
    • 제31권1호
    • /
    • pp.74-79
    • /
    • 2007
  • [ $PPy^+DBS^-$ ] 복합체는 유화중합에 의해 제조되었고 이때 iron(III) chloride($FeCl_3$)는 개시제로, dodecyl benzene sulfonic acid(DBSA)는 계면활성제 및 도판트로 사용되었다. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)는 chlorosulfonic acid(CSA)를 사용하여 설폰화되었고 양극은 $PPy^+DBS^-$ 복합체, 도전제 그리고 바인더로 구성되며 이때 바인더로 PPO와 설폰화된 poly (2,6-dimethyl-1,4-phenylene oxide) (SPPO)를 사용하였다. $PPy^+DBS^-/SPPO$ 양극은 $PPy^+DBS^-/PPO$에 비해 약 50% 높은 충 방전 성능을 나타내었는데 이는 SPPO가 바인더뿐만 아니라 도판트로 작용했기 때문이다. 더욱이 바인더로 사용된 고분자의 설폰화는 전도성 고분자와의 coulombic attraction을 유발시켜 두 상간의 혼화성을 증가시켰을 뿐만 아니라 양극과 전해질 사이의 접촉면적을 증가시켜 전기화학적으로 우수한 성능을 나타나게 했다.