• Title/Summary/Keyword: nano-composite material

Search Result 390, Processing Time 0.023 seconds

Solid State Reduction of Haematite by Mechanical Alloying Process (기계적 합금화법에 의한 헤마타이트의 고상환원)

  • 이충효;홍대석;이만승;권영순
    • Journal of Powder Materials
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 2002
  • The efects of mechanical aloying conditions and the type of reducing agent on the solid state reductionof haematite $Fe_2O_3$ have been investigated at room temperature. Aluminium titanium zinc and copper were used as reducing agent. Nanocomposites of metal-oxide in which oxide particles with nano size were dispersed in Fe matrix were obtained by mechanical alloying of $Fe_2O_3$ with aluminium and titanium respectively However the reduction of $Fe_2O_3$ by coppe was not occurred Composite materials of iron with $Al_2O_3$ and $TiO_2$ were obtained from the system of $Fe_2O_3-Al$ and $Fe_2O_3-Ti$ after ball milling for 20 hrs and 30 hrs respectively. And the system of $Fe_2O_3-Zn$ resulted in the formationof FeO with ZnO after ball milling of 120 hrs. The final grain sizes of iron estimated by X-ray diffraction line-width measurement were in the ranges of 24~33 nm.

Synthesis and Characteristics of W-Ni-Fe Nanocomposite Powder by Hydrogen Reduction of Oxides (산화물 수소환원에 의한 W-Ni-Fe 나노복합분말의 합성과 특성)

  • 이창우;윤의식;이재성
    • Journal of Powder Materials
    • /
    • v.8 no.1
    • /
    • pp.49-54
    • /
    • 2001
  • The synthesis and characteristics of W-Ni-Fe nanocomposite powder by hydrogen reduction of ball milled W-Ni-Fe oxide mixture were investigated. The ball milled oxide mixture was prepared by high energy attrition milling of W blue powder, NiO and $Fe_2O_3$ for 1 h. The structure of the oxide mixture was characteristic of nano porous agglomerate composite powder consisting of nanoscale particles and pores which act as effective removal path of water vapor during hydrogen reduction process. The reduction experiment showed that the reduction reaction starts from NiO, followed by $Fe_2O_3$ and finally W oxide. It was also found that during the reduction process rapid alloying of Ni-Fe yielded the formation of $\gamma$-Ni-Fe. After reduction at 80$0^{\circ}C$ for 1 h, the nano-composite powder of W-4.57Ni-2.34Fe comprising W and $\gamma$-Ni-Fe phases was produced, of which grain size was35nm for W and 87 nm for $\gamma$-Ni-Fe, respectively. Sinterability of the W heavy alloy nanopowder showing full density and sound microstructure under the condition of 147$0^{\circ}C$/20 min is thought to be suitable for raw material for powder injection molding of tungsten heavy alloy.

  • PDF

Fabrication of ZnS-SiO2 Composite and its Mechanical Properties (방전플라즈마 소결법을 이용한 ZnS-SiO2 복합재료의 제조와 기계적 특성)

  • Shin, Dae-Hoon;Kim, Gil-Su;Lee, Young-Jung;Cho, Hoon;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • ZnS-$SiO_2$ composite is normally used for sputtering target. In recent years, high sputtering power for higher deposition rate often causes crack formation of the target. Therefore the target material is required that the sintered target material should have high crack resistance, excellent strength and a homogeneous microstructure with high sintered density. In this study, raw ZnS and ZnS-$SiO_2$ powders prepared by a 3-D mixer or high energy ball-milling were successfully densified by spark plasma sintering, the effective densification method of hard-to-sinter materials in a short time. After sintering, the fracture toughness was measured by the indentation fracture (IF) method. Due to the effect of crack deflection by the residual stress occurred by the second phase of fine $SiO_2$, the hardness and fracture toughness reached to 3.031 GPa and $1.014MPa{\cdot}m^{1/2}$, respectively.

Organic Passivation Material-Polyvinyl Alcohol (PVA)/Layered Silicate Nanocomposite-for Organic Thin Film Transistor

  • Ahn, Taek;Suk, Hye-Jung;Yi, Mi-Hye
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1539-1542
    • /
    • 2007
  • We have synthesized novel organic passivation materials to protect organic thin film transistors (OTFTs) from $H_2O$ and $O_2$ using polyvinyl alcohol (PVA)/layered silicate (SWN) nano composite system. Up to 3 wt% of layered silicate to PVA, very homogeneous nanocomposite solution was prepared.

  • PDF

Preparation, characterization and comparison of antibacterial property of polyethersulfone composite membrane containing zerovalent iron or magnetite nanoparticles

  • Dizge, Nadir;Ozay, Yasin;Simsek, U. Bulut;Gulsen, H. Elif;Akarsu, Ceyhun;Turabik, Meral;Unyayar, Ali;Ocakoglu, Kasim
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.51-71
    • /
    • 2017
  • Antimicrobial polyethersulfone ultrafiltration membranes containing zerovalent iron ($Fe^0$) and magnetite ($Fe_3O_4$) nanoparticles were synthesized via phase inversion method using polyethersulfone (PES) as membrane material and nano-iron as nanoparticle materials. Zerovalent iron nanoparticles (nZVI) were prepared by the reduction of iron ions with borohydride applying an inert atmosphere by using $N_2$ gases. The magnetite nanoparticles (nMag) were prepared via co-precipitation method by adding a base to an aqueous mixture of $Fe^{3+}$ and $Fe^{2+}$ salts. The synthesized nanoparticles were characterized by scanning electron microscopy, X-ray powder diffraction, and dynamic light scattering analysis. Moreover, the properties of the synthesized membranes were characterized by scanning electron microscopy energy dispersive X-ray spectroscopy and atomic force microscopy. The PES membranes containing the nZVI or nMag were examined for antimicrobial characteristics. Moreover, amount of iron run away from the PES composite membranes during the dead-end filtration were tested. The results showed that the permeation flux of the composite membranes was higher than the pristine PES membrane. The membranes containing nano-iron showed good antibacterial activity against gram-negative bacteria (Escherichia coli). The composite membranes can be successfully used for the domestic wastewater filtration to reduce membrane biofouling.

Safety Assessments through Acute Oral Toxicity Test and Acute Dermal Toxicity Test of Cement Composite Containing Nano Materials (나노 소재 혼입 시멘트 복합체의 급성경구독성시험 및 급성경피독성시험을 통한 유해성 평가)

  • Jae Hyuck, Sung;Kyung Seuk, Song;Yeonung, Jeong;Sanghwa, Jung;Joo Hyung, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.411-419
    • /
    • 2022
  • This study conducted acute oral toxicity test and acute dermal toxicity test to evaluate the toxicity of lightweight and high-strength cement composite containing carbon nanotube. It was compared with the toxicity of ordinary concrete that did not contain carbon nanotube. Both lightweight and high-strength cement composite and ordinary concrete were categorized in GHS category 5 as a result of acute oral toxicity test. In addition, no toxic symproms were observed during the acute dermal toxicity test in all specimens, concluding that those were judged to correspond to GHS category 5/unclassified.

Composite-Based Material and Process Technology Review for Improving Performance of Piezoelectric Energy Harvester (압전 에너지 수확기의 성능 향상을 위한 복합재료 기반 소재 및 공정 기술 검토)

  • Kim, Geon Su;Jang, Ji-un;Kim, Seong Yun
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.357-372
    • /
    • 2021
  • The energy harvesting device is known to be promising as an alternative to solve the resource shortage caused by the depletion of petroleum resources. In order to overcome the limitations (environmental pollution and low mechanical properties) of piezoelectric elements capable of converting mechanical motion into electrical energy, many studies have been conducted on a polymer matrix-based composite piezoelectric energy harvesting device. In this paper, the output performance and related applications of the reported piezoelectric composites are reviewed based on the applied materials and processes. As for the piezoelectric fillers, zinc oxide, which is advantageous in terms of eco-friendliness, biocompatibility, and flexibility, as well as ceramic fillers based on lead zirconate titanate and barium titanate, were reviewed. The polymer matrix was classified into piezoelectric polymers composed of polyvinylidene fluoride and copolymers, and flexible polymers based on epoxy and polydimethylsiloxane, to discuss piezoelectric synergy of composite materials and improvement of piezoelectric output by high external force application, respectively. In addition, the effect of improving the conductivity or the mechanical properties of composite material by the application of a metal or carbon-based secondary filler on the output performance of the piezoelectric harvesting device was explained in terms of the structure of the composite material. Composite material-based piezoelectric harvesting devices, which can be applied to small electronic devices, smart sensors, and medicine with improved performance, can provide potential insights as a power source for wireless electronic devices expected to be encountered in future daily life.

Multiple effects of nano-silica on the pseudo-strain-hardening behavior of fiber-reinforced cementitious composites

  • Hossein Karimpour;Moosa Mazloom
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.467-484
    • /
    • 2023
  • Despite the significant features of fiber-reinforced cementitious composites (FRCCs), including better mechanical, fractural, and durability performance, their high content of cement has restricted their use in the construction industry. Although ground granulated blast furnace slag (GGBFS) is considered the main supplementary cementitious material, its slow pozzolanic reaction stands against its application. The addition of nano-sized mineral modifiers, including nano-silica (NS), is an alternative to address the drawbacks of using GGBFS. The main object of this empirical and numerical research is to examine the effect of NS on the strain-hardening behavior of cementitious composites; ten mixes were designed, and five levels of NS were considered. This study proposes a new method, using a four-point bending test to assess the use of nano-silica (NS) on the flexural behavior, first cracking strength, fracture energy, and micromechanical parameters including interfacial friction bond strength and maximum bridging stress. Digital image correlation (DIC) was used for monitoring the initiation and propagation of the cracks. In addition, to attain a deep comprehension of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. It was discovered that using nano-silica (NS) in cementitious materials results in an enhancement in the matrix toughness, which prevents multiple cracking and, therefore, strain-hardening. In addition, adding NS enhanced the interfacial transition zone between matrix and fiber, leading to a higher interfacial friction bond strength, which helps multiple cracking in the composite due to the hydrophobic nature of polypropylene (PP) fibers. The findings of this research provide insight into finding the optimum percent of NS in which both ductility and high tensile strength of the composites would be satisfied. As a concluding remark, a new criterion is proposed, showing that the optimum value of nano-silica is 2%. The findings and proposed method of this study can facilitate the design and utilization of green cementitious composites in structures.

Electromagnetic Interference Reflectivity of Nanostructured Manganese Ferrite Reinforced Polypyrrole Composites

  • Chakraborty, Himel;Chabri, Sumit;Bhowmik, Nandagopal
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.295-298
    • /
    • 2013
  • Nano-size manganese ferrite reinforced conductive polypyrrole composites reveal a core-shell structure by in situ polymerization, in the presence of dodecyl benzene sulfonic acid as the surfactant and dopant, and iron chloride as the oxidant. The structure and magnetic properties of manganese ferrite nano-fillers were measured, by using X-ray diffraction and vibrating sample magnetometer. The morphology, microstructure, and conductivity of the composite were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, and four-wire technique. The microwave-absorbing properties of composites reinforcement dispersed in resin coating with the coating thickness of 1.2 nm were investigated, by using vector network analyzers, in the frequency range of 8~12 GHz. A reflection loss of -8 dB was observed at 10.5 GHz.