• 제목/요약/키워드: nano-composite

Search Result 1,055, Processing Time 0.028 seconds

A machine learning-based model for the estimation of the critical thermo-electrical responses of the sandwich structure with magneto-electro-elastic face sheet

  • Zhou, Xiao;Wang, Pinyi;Al-Dhaifallah, Mujahed;Rawa, Muhyaddin;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.81-99
    • /
    • 2022
  • The aim of current work is to evaluate thermo-electrical characteristics of graphene nanoplatelets Reinforced Composite (GNPRC) coupled with magneto-electro-elastic (MEE) face sheet. In this regard, a cylindrical smart nanocomposite made of GNPRC with an external MEE layer is considered. The bonding between the layers are assumed to be perfect. Because of the layer nature of the structure, the material characteristics of the whole structure is regarded as graded. Both mechanical and thermal boundary conditions are applied to this structure. The main objective of this work is to determine critical temperature and critical voltage as a function of thermal condition, support type, GNP weight fraction, and MEE thickness. The governing equation of the multilayer nanocomposites cylindrical shell is derived. The generalized differential quadrature method (GDQM) is employed to numerically solve the differential equations. This method is integrated with Deep Learning Network (DNN) with ADADELTA optimizer to determine the critical conditions of the current sandwich structure. This the first time that effects of several conditions including surrounding temperature, MEE layer thickness, and pattern of the layers of the GNPRC is investigated on two main parameters critical temperature and critical voltage of the nanostructure. Furthermore, Maxwell equation is derived for modeling of the MEE. The outcome reveals that MEE layer, temperature change, GNP weight function, and GNP distribution patterns GNP weight function have significant influence on the critical temperature and voltage of cylindrical shell made from GNP nanocomposites core with MEE face sheet on outer of the shell.

Surface gloss, gloss retention, and color stability of 2 nano-filled universal resin composites

  • Gustavo Fabian Molina;Ricardo Juan Cabral;Ignacio Mazzola;Michael Burrow
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.43.1-43.13
    • /
    • 2022
  • Objectives: This study compared the surface gloss (SG), gloss retention (GR), and color stability (CS) of 2 universal resin composites after chemical (CA) and mechanical (MA) aging. Materials and Methods: Twenty disc-shaped samples of G-ænial A'Chord (GC-Europe) and Filtek Universal (3M-ESPE) were polished with sequential abrasive papers. For CA, specimens were stored in 1 mL of 75% ethanol for 15 days at 37℃, and readings (SG, GR, and CS) were obtained at baseline and 5, 10, and 15 days. For MA, specimens were subjected to 10,750 simulated brushing cycles. SG and CS were evaluated after every 3,583 cycles. SG was measured with a glossmeter (geometrical configuration: 60°), and values were expressed in gloss units. Color was measured with a spectrophotometer using the CIE-L*a*b* color system. The Student's t-test, 1-way analysis of variance, and Scheffé test were used for statistical analysis (α = 0.05). Results: G-ænial presented significantly higher SG values than Filtek (p = 0.02), with GR reductions of 5.2% (CA) and 5.3% (MA) for G-ænial and 7.6% (CA) and 7.2% (MA) for Filtek. The aging protocol had no statistically significant effect on SG or GR (p = 0.25) from baseline to the final readings. G-ænial-MA presented the lowest color difference (ΔE = 1.8), and G-ænial-CA and Filtek-CA had the largest changes (ΔE = 8.6 and ΔE = 11.8, respectively). Conclusion: G-ænial presented higher SG values and better CS. Both restorative materials demonstrated acceptable GR and CS. Aging protocols impacted these properties negatively.

Measurements of the Temperature Coefficient of Resistance of CVD-Grown Graphene Coated with PEI (PEI가 코팅된 CVD 그래핀의 저항 온도 계수 측정)

  • Soomook Lim;Ji Won Suk
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.342-348
    • /
    • 2023
  • There has been increasing demand for real-time monitoring of body and ambient temperatures using wearable devices. Graphene-based thermistors have been developed for high-performance flexible temperature sensors. In this study, the temperature coefficient of resistance (TCR) of monolayer graphene was controlled by coating polyethylenimine (PEI) on graphene surfaces to enhance its temperature-sensing performances. Monolayer graphene grown by chemical vapor deposition (CVD) was wet-transferred onto a target substrate. To facilitate the interfacial doping by PEI, the hydrophobic graphene surface was altered to be hydrophilic by oxygen plasma treatments while minimizing defect generation. The effect of PEI doping on graphene was confirmed using a back-gated field-effect transistor (FET). The CVD-grown monolayer graphene coated with PEI exhibited an improved TCR of -0.49(±0.03) %/K in a temperature range of 30~50℃.

Measurements of the Adhesion Energy of CVD-grown Monolayer Graphene on Dielectric Substrates (단일층 CVD 그래핀과 유전체 사이의 접착에너지 측정)

  • Bong Hyun Seo;Yonas Tsegaye Megra;Ji Won Suk
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.377-382
    • /
    • 2023
  • To enhance the performance of graphene-based devices, it is of great importance to better understand the interfacial interaction of graphene with its underlying substrates. In this study, the adhesion energy of monolayer graphene placed on dielectric substrates was characterized using mode I fracture tests. Large-area monolayer graphene was synthesized on copper foil using chemical vapor deposition (CVD) with methane and hydrogen. The synthesized graphene was placed on target dielectric substrates using polymer-assisted wet transfer technique. The monolayer graphene placed on a substrate was mechanically delaminated from the dielectric substrate by mode I fracture tests using double cantilever beam configuration. The obtained force-displacement curves were analyzed to estimate the adhesion energies, showing 1.13 ± 0.12 J/m2 for silicon dioxide and 2.90 ± 0.08 J/m2 for silicon nitride. This work provides the quantitative measurement of the interfacial interactions of CVD-grown graphene with dielectric substrates.

Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using non-contact measurement method

  • Grzegorz Ludwik Golewski
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.217-229
    • /
    • 2024
  • This paper presents results of visual analysis of cracks formation and propagation of concretes made of quaternary binders (QBC). A composition of the two most commonly used mineral additives, i.e. fly ash (FA) and silica fume (SF) in combination with nanosilica (nS), has been proposed as a partial replacement of the cement. The principal objective of the present study is to achieve information about the effect of simultaneous incorporation of three pozzolans as partial replacement to the OPC on the fracture processes in concretes made from quaternary binders (QBC). The modern and precise non-contact measurement method (NCMM) via digital image correlation (DIC) technique was used, during the studies. In the course of experiments it was established that the substitution of OPC with three pozzolans including the nanoadditive in FA+SF+nS FA+SF+nS combination causes a clear change of brittleness and behavior during fractures in QBCs. It was found that the shape of cracks in unmodified concrete was quasi-linear. Substitution of the binder by SCMs resulted in a slight heterogeneity of the structure of the QBC, including only SF and nS, and clear heterogeneity for concretes with the FA additive. In addition, as content of FA rises throughout each of QBC series, material becomes more ductile and shows less brittle failure. It means that an increase in the FA content in the concrete mix causes a significant change in fracture process in this composite in comparison to concrete with the addition of silica modifiers only.

Nonlocal bending, vibration and buckling of one-dimensional hexagonal quasicrystal layered nanoplates with imperfect interfaces

  • Haotian Wang;Junhong Guo
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.557-570
    • /
    • 2024
  • Due to interfacial ageing, chemical action and interfacial damage, the interface debonding may appear in the interfaces of composite laminates. Particularly, the laminates display a side-dependent effect at small scale. In this work, a three-dimensional (3D) and anisotropic thick nanoplate model is proposed to investigate the effects of imperfect interface and nonlocal parameter on the bending deformation, vibrational response and buckling stability of one-dimensional (1D) hexagonal quasicrystal (QC) layered nanoplates. By combining the linear spring model with the transferring matrix method, exact solutions of phonon and phason displacements, phonon and phason stresses of bending deformation, the natural frequencies of vibration and the critical buckling loads of 1D hexagonal QC layered nanoplates are derived with imperfect interfaces and nonlocal effects. Numerical examples are illustrated to demonstrate the effects of the imperfect interface parameter, aspect ratio, thickness, nonlocal parameter, and stacking sequence on the bending deformation, the vibrational response and the critical buckling load of 1D hexagonal QC layered nanoplate. The results indicate that both the interface debonding and nonlocal effect can reduce the stiffness and stability of layered nanoplates. Increasing thickness of QC coatings can enhance the stability of sandwich nanoplates with the perfect interfaces, while it can reduce first and then enhance the stability of sandwich nanoplates with the imperfect interfaces. The biaxial compression easily results in an instability of the QC layered nanoplates compared to uniaxial compression. QC material is suitable for surface layers in layered structures. The mechanical behavior of QC layered nanoplates can be optimized by imposing imperfect interfaces and controlling the stacking sequence artificially. The present solutions are helpful for the various numerical methods, thin nanoplate theories and the optimal design of QC nano-composites in engineering practice with interfacial debonding.

Thin Film Nanocomposite Based Nanofiltration Membrane for Wastewater Treatment: Fabrication and Dyes Removal (폐수처리용 박막나노복합체 기반 나노여과막: 제조 및 염료제거)

  • Dohoon Park;Rajkumar Patel
    • Membrane Journal
    • /
    • v.34 no.3
    • /
    • pp.182-191
    • /
    • 2024
  • This review addresses the pressing need for effective wastewater treatment methodologies by exploring advanced thin-film nanocomposite (TFN) nanofiltration membranes aimed at efficient dye removal from industrial effluents. Utilizing insights from recent research, the review focuses on the fabrication of TFN membranes incorporating innovative materials such as nanocarbons, silica nanospheres, metal-organic frameworks (MOFs), and MoS2. The primary goals are to enhance dye removal efficiency, improve antifouling properties, and maintain high selectivity for dye/salt separation. By leveraging the distinct advantages of these nanomaterials-including large surface areas, mechanical robustness, and specific pollutant interaction capabilities-this review aims to overcome the limitations of current nanofiltration technologies and provide sustainable solutions for water treatment challenges.

Size-dependent free vibration of coated functionally graded graphene reinforced nanoplates rested on viscoelastic medium

  • Ali Alnujaie;Ahmed A. Daikh;Mofareh H. Ghazwani;Amr E. Assie;Mohamed A Eltaher
    • Advances in nano research
    • /
    • v.17 no.2
    • /
    • pp.181-195
    • /
    • 2024
  • This study introduces a novel functionally graded material model, termed the "Coated Functionally Graded Graphene-Reinforced Composite (FG GRC)" model, for investigating the free vibration response of plates, highlighting its potential to advance the understanding and application of material property variations in structural engineering. Two types of coated FG GRC plates are examined: Hardcore and Softcore, and five distribution patterns are proposed, namely FG-A, FG-B, FG-C, FG-D, and FG-E. A modified displacement field is proposed based on the higher-order shear deformation theory, effectively reducing the number of variables from five to four while accurately accounting for shear deformation effects. To solve the equations of motion, an analytical solution based on the Galerkin approach was developed for FG GRC plates resting on a viscoelastic Winkler/Pasternak foundation, applicable to various boundary conditions. A comprehensive parametric analysis elucidates the impact of multiple factors on the fundamental frequencies. These factors encompass the types and distribution patterns of the coated FG GRC plates, gradient material distribution, porosities, nonlocal length scale parameter, gradient material scale parameter, nanoplate geometry, and variations in the elastic foundation. Our theoretical research aims to overcome the inherent challenges in modeling structures, providing a robust alternative to experimental analyses of the mechanical behavior of complex structures.

Artificial intelligence design for dependence of size surface effects on advanced nanoplates through theoretical framework

  • Na Tang;Canlin Zhang;Zh. Yuan;A. Yvaz
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.621-626
    • /
    • 2024
  • The work researched the application of artificial intelligence to the design and analysis of advanced nanoplates, with a particular emphasis on size and surface effects. Employing an integrated theoretical framework, this study developed a more accurate model of complex nanoplate behavior. The following analysis considers nanoplates embedded in a Pasternak viscoelastic fractional foundation and represents the important step in understanding how nanoscale structures may respond under dynamic loads. Surface effects, significant for nanoscale, are included through the Gurtin-Murdoch theory in order to better describe the influence of surface stresses on the overall behavior of nanoplates. In the present analysis, the modified couple stress theory is utilized to capture the size-dependent behavior of nanoplates, while the Kelvin-Voigt model has been incorporated to realistically simulate the structural damping and energy dissipation. This paper will take a holistic approach in using sinusoidal shear deformation theory for the accurate replication of complex interactions within the nano-structure system. Addressing different aspectsof the dynamic behavior by considering the length scale parameter of the material, this work aims at establishing which one of the factors imposes the most influence on the nanostructure response. Besides, the surface stresses that become increasingly critical in nanoscale dimensions are considered in depth. AI algorithms subsequently improve the prediction of the mechanical response by incorporating other phenomena, including surface energy, material inhomogeneity, and size-dependent properties. In these AI- enhanced solutions, the improvement of precision becomes considerable compared to the classical solution methods and hence offers new insights into the mechanical performance of nanoplates when applied in nanotechnology and materials science.

A semi-analytical study for vibration analysis of damaged core laminated cylindrical shell with functionally graded CNTs reinforced face sheets resting on a two-parameter elastic foundation

  • Aseel J. Mohammed;Bassam A. Mohammed;Hatam K. Kadhom;Anmar Ghanim Taki;Vahid Tahouneh
    • Advances in nano research
    • /
    • v.17 no.4
    • /
    • pp.301-313
    • /
    • 2024
  • The main objective of this paper is to study vibration of sandwich cylindrical shell with damaged core and FG face sheets resting on a two-parameter elastic foundation based on three-dimensional theory of elasticity. Three complicated equations of motion for the structure under consideration are semi-analytically solved by using generalized differential quadrature method. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features. A detailed parametric study is carried out in order to reveal the effects of different profiles of two-parameter elastic foundation modulus, different geometrical parameters such as the mid radius-to-thickness ratio, length-to-mean radius ratio and the thickness of face sheets on the vibrational characteristics of the damaged functionally graded sandwich cylindrical shell.