• Title/Summary/Keyword: nano-carbon

Search Result 1,324, Processing Time 0.029 seconds

Influence of Carbon Black as a Conductor on Electrode Characteristics for Lithium Secondary Battery

  • Yoon, Se-Rah;Lee, Joong-Kee;Ju, Jae-Beck;Cho, Byung-Won;Park, Dal-Keun
    • Carbon letters
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 2002
  • The electrochemical behavior of the $LiCoO_2$ electrode, containing carbon black as a conductor, depends upon the nature and characteristics of carbon black. In this study, six different kinds of carbon blacks were employed to investigate the relationship between the properties of carbon blacks and electrochemical characteristics of the electrode. The larger amount of surface oxygen functional groups brought the lower electrical conductivity for the carbon blacks. The electrical conductivity of carbon blacks was closely related to the impurities such as ash and volatile content. The rate capability and cyclability of the electrode were improved with the higher conductivity of carbon blacks used. So, it can be concluded that high conductive carbon black plays an important role as a conductor for high rate of charge-discharge capability and initial efficiency.

  • PDF

Effect of CNT Diameter on Physical Properties of Styrene-Butadiene Rubber Nanocomposites

  • Park, Young-Soo;Huh, Mong-Young;Kang, Sin-Jae;Yun, Seok-Il;Ahn, Kay-Hyeok
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.320-324
    • /
    • 2009
  • We investigated the effect of diameter and content of carbon nanotubes (CNTs) on the physical properties of styrenebutadiene rubber (SBR)/CNTs nanocomposites. CNTs-reinforced SBR nanocomposites were prepared by the melt mixing process. CNTs with different diameters were synthesized by the chemical vapor deposition method (CVD). In this work, the mechanical property and other physical properties of SBR/CNTS nanocomposites were discussed as a function of the content and diameter of CNTs.

Graphene Based Nano-electronic and Nano-electromechanical Devices

  • Lee, Sang-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.13-13
    • /
    • 2011
  • Graphene based nano-electronic and nano-electromechanical devices will be introduced in this presentation. The first part of the presentation will be covered by our recent results on the fabrication and physical properties of artificially twisted bilayer graphene. Thanks to the recently developed contact transfer printing method, a single layer graphene sheet is stacked on various substrates/nano-structures in a controlled manner for fabricating e.g. a suspended graphene device, and single-bilayer hybrid junction. The Raman and electrical transport results of the artificially twisted bilayer indicates the decoupling of the two graphene sheets. The graphene based electromechanical devices will be presented in the second part of the presentation. Carbon nanotube based nanorelay and A new concept of non-volatile memory based on the carbon nanotube field effect transistor together with microelectromechanical switch will be briefly introduced at first. Recent progress on the graphene based nano structures of our group will be presented. The array of graphene resonators was fabricated and their mechanical resonance properties are discussed. A novel device structures using carbon nanotube field effect transistor combined with suspended graphene gate will be introduced in the end of this presentation.

  • PDF

A new nano-composite carbon ink for disposable dopamine biosensors (나노컴포지트 카본 잉크가 전착된 일회용 도파민 바이오센서)

  • Dinakaran, T.;Chang, S.-C.
    • Analytical Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • A new nano-composite carbon ink for the development of disposable dopamine (DA) biosensors based on screen-printed carbon electrodes (SPCEs) is introduced. The method developed uses SPCEs coupled with a tyrosinase modified nano-composite carbon ink. The ink was prepared by an “in-house” procedure with reduced graphene oxide (rGO), Pt nanoparticles (PtNP), and carbon materials such as carbon black and graphite. The rGO-PtNP carbon composite ink was used to print the working electrodes of the SPCEs and the reference counter electrodes were printed by using a commercial Ag/AgCl ink. After the construction of nano-composite SPCEs, tyrosinase was immobilized onto the working electrodes by using a biocompatible matrix, chitosan. The composite of nano-materials was characterized by X-ray photoelectron spectroscopy (XPS) and the performance characteristics of the sensors were evaluated by using voltammetric and amperometric techniques. The cyclic voltammetry results indicated that the sensors prepared with the rGO-PtNP-carbon composite ink revealed a significant improvement in electro-catalytic activity to DA compared with the results obtained from bare or only PtNP embedded carbon inks. Optimum experimental parameters such as pH and operating potential were evaluated and calibration curves for dopamine were constructed with the results obtained from a series of amperometric detections at −0.1 V vs. Ag/AgCl. The limit of detection was found to be 14 nM in a linear range of 10 nM to 100 µM of DA, and the sensor’s sensitivity was calculated to be 0.4 µAµM−1cm−2.

Photocatalytic Degradation of E. coli and S. aureus by Multi Walled Carbon Nanotubes

  • Sharon, Madhuri;Datta, Suprama;Shah, Sejal;Sharon, Mahesh War;Soga, T.;Afre, Rakesh
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.184-190
    • /
    • 2007
  • Carbon Nano Tubes could be either metallic or semi-conducting in nature, depending on their diameter. Its photocatalytic behavior has given an impetus to use it as an anti-microbial agent. More than 95% Escherichia coli and Staphylococcus aureus bacteria got killed when exposed to Carbon Nano Tubes for 30 minutes in presence of sunlight. Carbon Nano Tubes are supposed to have smooth surface on to which it accumulates positive charges when exposed to light. The surface that is non illuminated has negative charge. At the cellular level microorganisms produce negative charges on the cell membrane, Therefore damaging effect of multi walled carbon nano tubes (exposed to light) on the microorganisms is possible. In this paper, photo catalytic killing of microbes by multi walled carbon nano tubes is reported. Killing was due to damage in the cell membrane, as seen in SEM micrographs. Moreover biochemical analysis of membrane as well as total cellular proteins by SDS PAGE showed that there was denaturation of membrane proteins as well as total proteins of both the microbes studied. The killed microbes that showed a decrease in number of protein bands (i.e. due to breaking down of proteins) also showed an increase in level of free amino acids in microbes. This further confirmed that proteins got denatured or broken down into shorter units of amino acids. Increased level of free amino acids was recorded in both the microbes treated with multi walled carbon nano tubes and sunlight.

Pt nanoparticles-coated Carbon nanofiber for FED application

  • Lee, Won-Woo;Choi, Young-Min;Ryu, Beyong-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1590-1592
    • /
    • 2007
  • In this study, we prepared CNF (carbon nanofiber) by the solvothermal method for FED (field emission display) applications. We controlled several conditions to synthesize effective CNF for field emission applications. Nano-sizesd Pt nanoparticles were coated on the CNF. In this study, we have applied Pt nanoparticles- coated CNF which can be produced in mass, to field emission application.

  • PDF

Nano Communication Systems Using Carbon Nanotube (탄소나노튜브를 활용한 나노 통신 시스템 연구)

  • Kwon, Tae-Soo;Hwang, Gyung-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.9
    • /
    • pp.877-884
    • /
    • 2016
  • Nano communication system technologies are future core technologies that facilitate the implementation of tiny wireless communication systems with sizes in the range of hundreds of nanometers to tens of micrometers, which cannot be implemented by current wireless communication system technologies. In particular, novel nano communication system technology, which is based on electrical and mechanical resonance characteristics of carbon nanotube(: CNT), does not simply miniaturize system modules, but suggests a new approach that changes system architectures. Therefore, this paper surveys the state of the art on CNT-based nano communication technologies in aspects of system implementation, and proposes important research issues for convergence of nano and communication technologies.

Quantitative Evaluation of Non-Carbon Content in the Single Wall Carbon Nanotube Soot using Thermogravimetric Analysis

  • Han, J.H.;An, K.H.;Lee, N.S.;Goak, J.C.;Jeong, M.S.;Choi, Y.C.;Oh, K.H.;Kim, K.K.;Lee, Y.H.
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.5-8
    • /
    • 2009
  • We measured the non-carbon content of single-walled carbon nanotubes (SWCNTs) in SWCNT soot using thermogravimetric analysis. The weight increased percentage by the oxidation of metal in the raw soot is well obtained by TGA graph which was confirmed with ICP-AES, XRD, and XPS. This work will be very useful for the purity precise evaluation of SWCNT with UN-vis-NIR spectroscopy.