• Title/Summary/Keyword: nano-approach

Search Result 354, Processing Time 0.026 seconds

Intensive Proteomic Approach to Identify Secreted Peptides/Proteins from 3T3-L1 Adipocytes using Gel Electrophoresis and Liquid Chromatograph Separation Methods (젤 전기영동 및 액체 크로마토그래피 분리 방법을 이용하여 지방 세포로부터 분비되는 단백질들에 대한 프로테오믹스 연구 방법)

  • Hwang, Hyun-Ho;Baek, Moon-Chang
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.203-212
    • /
    • 2011
  • Adipocytes have been known to secrete a number of important proteins called adipokines with roles in energy metabolism, reproduction, cardiovascular function and immunity. In this study we have attempted to identify intensively secretory proteins from 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated into mature adipocytes and then the cells were left in serum-free medium. The supernatant was filtrated and dialyzed. Lyophilized secretome was fractionated by two different methods, 1-D SDS PAGE and RP-FPLC. The tryptic peptides from the gel slices and the FPLC fractions were analyzed by nanoLC/ESI-MS/MS. We identified a total of 303 identical proteins from two methods, 251 proteins from 1-D gel and 184 proteins from RP-FPLC. 86 of them were listed as a secretory protein Finally, we identified many known or unknown secreted proteins existed in the low level including adiponectin, angiotensinogen, bone morphogenetic protein-1 (BMP-1), macrophage migration inhibitory factor (MIF), insulin like growth factor-II (IGF-II), interleukin-6 (IL-6), follistatin-related protein-1, minecan, and resistin. The existence of some of secreted proteins has been confirmed in RNA level. This proteomic experiment is useful for the intensive screening of secretory proteins in many kinds of other cells.

Graphene Oxide as a Novel Nanoplatform for Direct Hybridization of Graphene-SnO2

  • Park, Hun;Han, Tae Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3269-3273
    • /
    • 2013
  • Graphene oxide (GO) has been of particular interest because it provides unique properties due to its high surface area, chemical functionality and ease of mass production. GO is produced by chemical exfoliation of graphite and is decorated with oxygen-containing groups such as phenol hydroxyl, epoxide groups and ionizable carboxylic acid groups. Due to the presence of those functional groups, GO can be utilized as a novel platform for hybrid nanocomposites in chemical synthetic approaches. In this work, GO-$SnO_2$ nanocomposites have been prepared through the spontaneous formation of molecular hybrids. When $SnO_2$ precursor solution and GO suspension were simply mixed, $Sn^{2+}$ was spontaneously formed into $SnO_2$ nanoparticles upon the deoxygenation of GO. Through further chemical reduction by adding hydrazine, reduced GO-$SnO_2$ hybrid was finally created. Our investigation for the electrocapacitive properties of hybrid electrode showed the enhanced performance (389 F/g), compared with rGO-only electrode (241 F/g). Our approach offers a scalable, robust synthetic route to prepare graphene-based nanocomposites for supercapacitor electrode via spontaneous hybridization.

Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field

  • Ebrahimi, Farzad;Hosseini, S. Hamed S.;Selvamani, Rajendran
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.565-584
    • /
    • 2020
  • The nonlinear thermo-electro-elastic buckling behavior of viscoelastic nanoplates under magnetic field is investigated based on nonlocal elasticity theory. Employing nonlinear strain-displacement relations, the geometrical nonlinearity is modeled while governing equations are derived through Hamilton's principle and they are solved applying semi-analytical generalized differential quadrature (GDQ) method. Eringen's nonlocal elasticity theory considers the effect of small size, which enables the present model to become effective in the analysis and design of nano-sensors and nano actuators. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. It is demonstrated that the GDQ method has high precision and computational efficiency in the buckling analysis of viscoelastic nanoplates. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as electric voltage, small scale effects, elastomeric medium, magnetic field, temperature effects, the viscidity and aspect ratio of the nanoplate on its nonlinear buckling characteristics. It is explicitly shown that the thermo-electro-elastic nonlinear buckling behavior of viscoelastic nanoplates is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of viscoelastic nanoplates as fundamental elements in nanoelectromechanical systems.

Nonlocal vibration analysis of FG nano beams with different boundary conditions

  • Ehyaei, Javad;Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.4 no.2
    • /
    • pp.85-111
    • /
    • 2016
  • In this paper, the classical and non-classical boundary conditions effect on free vibration characteristics of functionally graded (FG) size-dependent nanobeams are investigated by presenting a semi analytical differential transform method (DTM) for the first time. Three kinds of mathematical models, namely; power law (P-FGM), sigmoid (S-FGM) and Mori-Tanaka (MT-FGM) distribution are considered to describe the material properties in the thickness direction. The nonlocal Eringen theory takes into account the effect of small size, which enables the present model to become effective in the analysis and design of nanosensors and nanoactuators. Governing equations are derived through Hamilton's principle and they are solved applying semi analytical differential transform method. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as small scale effects, spring constant factors, various material compositions and mode number on the normalized natural frequencies of the FG nanobeams in detail. It is explicitly shown that the vibration of FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

Eu3+/Tb3+Co-Doped Cerium Oxide Transparent Nanocomposite for Color-Tunable Emission

  • Li, Xiaoyan;Yu, Yunlong;Guan, Xiangfeng;Luo, Peihui;Jiang, Linqin;Zheng, Zhiqiang;Chen, Dagui
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850119.1-1850119.6
    • /
    • 2018
  • $Eu^{3+}/Tb^{3+}$ co-doped nanocomposite containing $CeO_2$ nanocrystals was successfully prepared by an in situ sol-gel polymerization approach. High-resolution transmission electron microscopy demonstrated the homogeneous precipitation of $CeO_2$ nanocrystals among the polymethylmethacrylate (PMMA) matrix. The thermal stability and UV-shielding capability of the obtained nanocomposite were improved with increase of $CeO_2$ content. The tuning of the emissive color from green and yellow to red can be easily achieved by varying the dopant species and concentration. These results suggested that the obtained nanocomposite could be potentially applicable in transparent solid-state luminescent devices.

MoS2 Layers Decorated RGO Composite Prepared by a One-Step High-Temperature Solvothermal Method as Anode for Lithium-Ion Batteries

  • Liu, Xuehua;Wang, Bingning;Liu, Jine;Kong, Zhen;Xu, Binghui;Wang, Yiqian;Li, Hongliang
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850135.1-1850135.8
    • /
    • 2018
  • A one-step high-temperature solvothermal approach to the synthesis of monolayer or bilayer $MoS_2$ anchored onto reduced graphene oxide (RGO) sheet (denoted as $MoS_2/RGO$) is described. It was found that single-layered or double-layered $MoS_2$ were synthesized directly without an extra exfoliation step and well dispersed on the surface of crumpled RGO sheets with random orientation. The prepared $MoS_2/RGO$ composites delivered a high reversible capacity of $900mAhg^{-1}$ after 200 cycles at a current density of $200mAg^{-1}$ as well as good rate capability as anode active material for lithium ion batteries. This one-step high-temperature hydrothermal strategy provides a simple, cost-effective and eco-friendly way to the fabrication of exfoliated $MoS_2$ layers deposited onto RGO sheets.

Vibration analysis of double-walled carbon nanotubes based on Timoshenko beam theory and wave propagation approach

  • Emad Ghandourah;Muzamal Hussain;Amien Khadimallah;Abdulsalam Alhawsawi;Essam Mohammed Banoqitah;Mohamed R. Ali
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.521-525
    • /
    • 2023
  • This paper concerned with the vibration of double walled carbon nanotubes (CNTs) as continuum model based on Timoshenko-beam theory. The vibration solution obtained from Timoshenko-beam theory provides a better presentation of vibration structure of carbon nanotubes. The natural frequencies of double-walled CNTs against half axial wave mode are investigated. The frequency decreases on decreasing the half axial wave mode. The shape of frequency arcs is different for various lengths. It is observed that model has produced lowest results for C-F and highest for C-C. A large parametric study is performed to see the effect of half axial wave mode on frequencies of CNTs. This numerically vibration solution delivers a benchmark results for other techniques. The comparison of present model is exhibited with previous studies and good agreement is found.

Effect of Curing Period on Photocatalytic Effect of TiO2 Nanotubes-reinforced Cement Paste (양생기간이 TiO2 나노튜브 보강 시멘트 페이스트의 광촉매 효과에 미치는 영향)

  • Liu, Jun-Xing;Jin, Da-hyung;Bae, Sung-chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.172-173
    • /
    • 2021
  • With the development of nano-reinforcement technology and the increasing concern for environmental issues, TiO2 nanomaterials have received wide attention as an additive besides carbon nanomaterials that can be used to enhance the mechanical properties of cement-based materials. Also, TiO2-based materials can allow cement-baned materials with photocatalytic capability, providing a potentially effective approach to reduce environmental problems. In this work, compressive strength, splitting tensile strength, and degradation of methylene blue solution were used as target to assess the effect of TiO2 nanotubes on the mechanical strength and photocatalytic effect of hardened cement paste at different curing time. According to the strength results, the optimum amount of TiO2 was identified as 0.5% of the weight of cement. Meanwhile, the TiO2 nanotubes-reinforced specimen exhibited better photocatalytic effect in the early stage of curing.

  • PDF

Black Ice Detection Platform and Its Evaluation using Jetson Nano Devices based on Convolutional Neural Network (CNN)

  • Sun-Kyoung KANG;Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we propose a black ice detection platform framework using Convolutional Neural Networks (CNNs). To overcome black ice problem, we introduce a real-time based early warning platform using CNN-based architecture, and furthermore, in order to enhance the accuracy of black ice detection, we apply a multi-scale dilation convolution feature fusion (MsDC-FF) technique. Then, we establish a specialized experimental platform by using a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Experimental results of a real-time black ice detection platform show the better performance of our proposed network model compared to conventional image segmentation models. Our proposed platform have achieved real-time segmentation of road black ice areas by deploying a road black ice area segmentation network on the edge device Jetson Nano devices. This approach in parallel using multi-scale dilated convolutions with different dilation rates had faster segmentation speeds due to its smaller model parameters. The proposed MsCD-FF Net(2) model had the fastest segmentation speed at 5.53 frame per second (FPS). Thereby encouraging safe driving for motorists and providing decision support for road surface management in the road traffic monitoring department.

Lubrication Properties of Various Pattern Shapes on Rough Surfaces Considering Asperity Contact (돌기접촉을 고려한 거친 표면 위 다양한 패턴 형상에 따른 윤활 특성 연구)

  • Kim, Mi-Ru;Lee, Seung-Jun;Jeong, Jae-Ho;Lee, Deug-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.39-46
    • /
    • 2018
  • Two surfaces that have relative motion show different characteristics according to surface roughness or surface patterns in all lubrication areas. For two rough surfaces with mixed lubrication, this paper proposes a new approach that includes the contact characteristics of the surfaces and a probabilistic method for a numerical analysis of lubrication. As the contact area of the two surfaces changes according to the loading conditions, asperity contact is very important. An average flow model developed by Patir-Cheng is central to the study of lubrication for rough surfaces. This average flow model also refers to a multi-asperity contact model for deriving a modified Reynolds equation and calculating the lubricant characteristics of a bearing surface with random roughness during fluid flow. Based on the average flow model, this paper carried out a numerical analysis of lubrication using a contact model by considering a load change made by the actual contact of asperities between two surfaces. Lubrication properties show different characteristics according to the surface patterns. This study modeled various geometric surface patterns and calculated the characteristics of lubrication.