• Title/Summary/Keyword: nano titanium dioxide

Search Result 62, Processing Time 0.026 seconds

Synthesis of Pt@TiO2 Nano-composite via Photochemical Reduction Method (광화학 환원방법을 이용한 Pt@TiO2 나노 복합체 합성)

  • Kim, Ji Young;Byun, Jong Min;Kim, Jin Woo;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.119-123
    • /
    • 2014
  • Pt has been widely used as catalyst for fuel cell and exhausted gas clean systems due to its high catalytic activity. Recently, there have been researches on fabricating composite materials of Pt as a method of reducing the amount of Pt due to its high price. One of the approaches for saving Pt used as catalyst is a core shell structure consisting of Pt layer on the core of the non-noble metal. In this study, the synthesis of Pt shell was conducted on the surface of $TiO_2$ particle, a non-noble material, by applying ultraviolet (UV) irradiation. Anatase $TiO_2$ particles with the average size of 20~30 nm were immersed in the ethanol dissolved with Pt precursor of $H_2PtCl_6{\cdot}6H_2O$ and exposed to UV irradiation with the wavelength of 365 nm. It was confirmed that Pt nano-particles were formed on the surface of $TiO_2$ particles by photochemical reduction of Pt ion from the solution. The morphology of the synthesized Pt@$TiO_2$ nano-composite was examined by TEM (Transmission Electron Microscopy).

Fabrication of Transition-metal-incorporated TiO2 Nanopowder by Flame Synthesis (화염법에 의한 천이금속 첨가 이산화티타늄 나노분말의 제조)

  • Park Hoon;Jie Hyunseock;Lee Seung-Yong;Ahn Jae-Pyoung;Lee Dok-Yol;Park Jong-Ku
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.399-405
    • /
    • 2005
  • Nanopowders of titanium dioxide $(TiO_2)$ incorporating the transition metal element(s) were synthesized by flame synthesis method. Single element among Fe(III), Cr(III), and Zn(II) was doped into the interior of $TiO_2$ crystal; bimetal doping of Fe and Zn was also made. The characteristics of transition-metal-doped $TiO_2$ nanopowders in the particle feature, crystallography and electronic structures were determined with various analytical tools. The chemical bond of Fe-O-Zn was confirmed to exist in the bimetal-doped $TiO_2$ nanopowders incorporating Fe-Zn. The transition element incorporated in the $TiO_2$ was attributed to affect both Ti 3d orbital and O 2p orbital by NEXAFS measurement. The bimetal-doped $TiO_2$ nanopowder showed light absorption over more wide wavelength range than the single-doped $TiO_2$ nanopowders.

Status of nano-packaging and safety management of nanomaterials by migration (나노포장의 개발 및 나노물질 이행에 따른 안전관리 현황)

  • Lee, Jae Yeol;Jo, Yumi;Choi, Jae Chun;Park, Se-Jong;Kim, Jun Tae
    • Food Science and Industry
    • /
    • v.50 no.2
    • /
    • pp.52-59
    • /
    • 2017
  • Nano-packaging is defined as food packages produced with nanoparticles or using nanotechnology in their process. Nano-packaging has become more available in the current market because of its enhanced functional properties such as antimicrobial and barrier properties. However, consumers have worried about toxicity by migration of nanomaterials from packaging to food. Currently, many commercialized products are coated or composited with inorganic nanomaterials such as nanosilver, nanoclay, zinc oxide, titanium dioxide, and so on. In this study, nanomaterials used in food packaging were classified and the commercially available nano-packaging were screened. Study on the migration of nanomaterials in various food simulants was also summarized.

Photodegradation of Volatile Organic Compound (VOC) Through V-Doped or CuOx-grafted $TiO_2$ nanoparticles

  • Kim, Beum Woo;Kim, Seonmin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.271.1-271.1
    • /
    • 2013
  • Titania is usually used in sun-screens, tooth paste, and other daily used objects as a pigment. However, scientists have focused on titania as photocatalyst due to its excellent activities. By fabricating vanadium doped TiO2 and CuOx co-catalyzed TiO2 nano-size filter, the degradation level of the volatile organic compound (VOC) concentration was tested using 365nm UV LED as light source in a closed chamber. Main purpose for this test is to evaluate the activities of various catalysts for degrading the VOCs which are detrimental to human body and toluene and p-xylene were chosen in the VOC removal test. Target gas materials were injected into the test chamber with dry air as carrier gas which was flowed into the gas washer bottle filled with liquid form of VOC substance. When the VOC gas flows into the chamber, it is circulated by 200 mm fan in order to contact with the set-up filter on the aluminum holder. Target gas concentration in the chamber was monitored using VOC detector (miniRae3000, Raesystems) which was also placed inside the chamber. With the measured concentration, the VOC degradation efficiency and the degradation rate were evaluated and used to compare the catalytic activities.

  • PDF

Polymer Waveguide Based Refractive Index Sensor Using Polarimetric Interference (편광 간섭을 이용한 광도파로 기반의 표면 굴절률 센서)

  • Son, Geun-Sik;Kwon, Soon-Woo;Kim, Woo-Kyung;Yang, Woo-Seok;Lee, Hyung-Man;Lee, Han-Young;Lee, Sung-Dong;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.193-198
    • /
    • 2008
  • A novel refractive index sensor, which consists of polymer channel waveguide overlaid with $TiO_2$ thin film, is demonstrated. To evaluate the fabricated sensor, we measured the polarimetric interference induced by concentration change of injected glycerol solution. Our experimental results show that thicker $TiO_2$ film improves the sensitivity of the polarimetric interferometer. For the fabricated waveguide with a 20 nm thick $TiO_2$ film, the measured index change to lead phase variation of $2{\pi}$ is $1.8{\times}10^{-3}$.

The Effects of Composition, Solvent Selectivity, and Additive on the Morphology of Hybrid Nano Thin Films Composed of Self-Assembled Block Copolymer and Titanium Dioxide (자기조립 블록공중합체와 이산화티타늄으로 구성된 하이브리드 나노 박막의 모폴로지에 미치는 고분자의 조성, 용매의 선택성 및 첨가제의 영향)

  • Jang, Yoon-Hee;Cha, Min-Ah;Kim, Dong-Ha
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.465-469
    • /
    • 2008
  • Hybrid thin films composed of block copolymer(BCP) and $TiO_2$ with various morphologies on the nanoscale were fabricated using self-assembly of block copolymer combined with sol-gel process. The factors governing morphology changes considered in this study are block copolymer composition, selectivity of solvent and the inclusion of an additive. We also investigated the efficiency of photoluminescence for selected films with different morphologies. Micelle or nanowire structure can be derived from the self-assembly of poly (styrene-block-4-vinyl pyridine) (PS-b-P4VP) depending on the relative selectivity of the solvent for the two blocks, and the titanium tetraisopropoxide ($Ti{OCH (CH_3)_2}_4$, TTIP) is coordinated with nitrogen in P4VP block. Addition of a third component 3-pentadecylphenol into the BCP/sol-gel mixture solution induces morphology change as a result of the change of relative volume fraction of the BCP. We confirmed that the efficiency of $TiO_2$ fluorescence changes for films depending on morphologies.

Liquid Uptake and Methanol Transport Behaviour of PVDF/SPEEK/TiO2 Hybrid Membrane for DMFC (DMFC용 PVDF/SPEEK/TiO2 하이브리드 막의 수분함량과 메탄올 전이현상)

  • You, Sun-Kyung;Kim, Han-Joo;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.177-180
    • /
    • 2005
  • A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxide nano particles content. Their liquid uptake, methanol permeability and proton conductivity as a function of inorganic oxide content were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and liquid uptake. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of the morphology, membranes are homogeneous and exhibit a good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with the standard nafion membrane.

Dynamic analysis of concrete beams reinforced with Tio2 nano particles under earthquake load

  • Sharifi, Morteza;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Wind and Structures
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • This research studies the dynamic analysis of a concrete column reinforced with titanium dioxide ($TiO_2$) nanoparticles under earthquake load. The effect of nanoparticles accumulation in a region of concrete column is examined using Mori-Tanaka model. The structure is simulated mathematically based on the theory of sinusoidal shear deformation theory (SSDT). By calculating strain-displacement and stress-strain relations, the system energies include potential energy, kinetic energy, and external works are derived. Then, using the Hamilton's principle, the governing equations for the structure are extracted. Using these equations, the response of the concrete column under earthquake load is investigated using the numerical methods of differential quadrature (DQ) and Newark. The purpose of this study is to study the effects of percentage of nanoparticles, nanoparticles agglomeration, geometric parameters and boundary conditions on the dynamic response of the structure. The results indicate that by increasing the volume percent of $TiO_2$ nanoparticles, the maximum dynamic deflection of the structure decreases.

Seed Layers in TiO2 Nanorods on FTO (FTO 기판위 TiO2 나노로드의 시드박막층)

  • Kim, Hyun;Yang, Bee Lyong
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.9-12
    • /
    • 2015
  • Nano-structured electrodes were fabricated to develop efficient photoelectrochemical conversion systems for the synthesis of hydrogen from water and hydrocarbon fuels from $CO_2$. In this work, we compared the photoactivity of rutile $TiO_2$ nanorods grown on FTO and SEED/FTO by a hydrothermal method. An analysis of the microstructures showed that the density of nanorod/SEED/FTO samples, which showed only the (002) peak in their x-ray diffraction patterns, was two times higher than that of a nanorod/FTO sample. The photocurrent density of nanorod/SEED/FTO samples was increased by as much as 40% of the photocurrent density of the nanorod/FTO sample due to the increased specific density of the nanorods. However, the transient time for a recombination of photogenerated electrons and holes was 20 times faster in the nanorod/SEED/FTO. The seed layers are discussed as possible recombination sites.

Bio-toxicity of Titanium Dioxide Nano Particles (P-25) in Zebrafish Development Stage (Zebrafish 발생기에서 $TiO_2(P-25)$ 나노 입자의 생물 독성)

  • Yeo, Min-Kyeong;Jo, Yoon-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.3
    • /
    • pp.189-196
    • /
    • 2007
  • [ $TiO_2$ ] is widely used because it is non-toxic. Recently, however, nanometer size $TiO_2$ particles (P-25) have been produced and used to increase the photo catalysis efficiency. Nanometer-sized $TiO_2$ is efficient, but due to its small size ($20{\sim}30\;nm$), it can flow into ecosystems and into cells. Thus, it may affect human health. Additionally, $TiO_2$ can produce a second contaminant, OH-radical, which is a health risk for all living organisms during photo degradation reaction. Hence, when nanometer-sized $TiO_2$ flows into natural streams and attaches to living organisms, it will create health risks. We investigated the biological toxicity of this condition in zebrafish embryos. We observed abnormal morphology, hatching rate, and measured the catalase activity to determine anti-oxidation at 100 post fertilization hours. Zebrafish were somewhat affected by $TiO_2$ nanometer sized particles under UV-A (a condition similar to sunlight). Powdered $TiO_2$ is toxic to the zebrafish fly. Even without light, $TiO_2$ particles attached to embryos and flies, having an effect on both.