Bio-toxicity of Titanium Dioxide Nano Particles (P-25) in Zebrafish Development Stage

Zebrafish 발생기에서 $TiO_2(P-25)$ 나노 입자의 생물 독성

  • Yeo, Min-Kyeong (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Jo, Yoon-Hee (Department of Environmental Science and Engineering, Kyung Hee University)
  • 여민경 (경희대학교 환경학 및 환경공학) ;
  • 조윤희 (경희대학교 환경학 및 환경공학)
  • Published : 2007.09.30

Abstract

[ $TiO_2$ ] is widely used because it is non-toxic. Recently, however, nanometer size $TiO_2$ particles (P-25) have been produced and used to increase the photo catalysis efficiency. Nanometer-sized $TiO_2$ is efficient, but due to its small size ($20{\sim}30\;nm$), it can flow into ecosystems and into cells. Thus, it may affect human health. Additionally, $TiO_2$ can produce a second contaminant, OH-radical, which is a health risk for all living organisms during photo degradation reaction. Hence, when nanometer-sized $TiO_2$ flows into natural streams and attaches to living organisms, it will create health risks. We investigated the biological toxicity of this condition in zebrafish embryos. We observed abnormal morphology, hatching rate, and measured the catalase activity to determine anti-oxidation at 100 post fertilization hours. Zebrafish were somewhat affected by $TiO_2$ nanometer sized particles under UV-A (a condition similar to sunlight). Powdered $TiO_2$ is toxic to the zebrafish fly. Even without light, $TiO_2$ particles attached to embryos and flies, having an effect on both.

Keywords

References

  1. 안광현, 김봉희. 내분비장애물질인 bisphenol A의 free radical 생성을 통한 독성 발현, J. Environ Toxicol. 2003; 18(3): 175-182
  2. Afaq F, Abidi P, Matin R and Rahman Q. Cytotoxicity, prooxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide, J. Appl. Toxicol. 1998; 18: 307-312 https://doi.org/10.1002/(SICI)1099-1263(1998090)18:5<307::AID-JAT508>3.0.CO;2-K
  3. Beck-Speler I, Dayal N, Karg E, Maler KL, Roth C, Ziesenls A and Heyder J. Agglomerates of ultrafine particles of elemental carbon and $TiO_2$ induce generation of lipid mediators in alveolar macrophages, Environ. Health Perspect. 109 Suppl 2001; 4: 613-618
  4. Degussa Tech. Bull. 1984; 56: p. 8
  5. Dunlop PSM, Byrne JA, Manga N and Eggins BR. The photocatalytic removal of bacterial pollutants from drinking water, Journal of photochemistry and photobiology A: Chemistry 2002; 148: 355-363 https://doi.org/10.1016/S1010-6030(02)00063-1
  6. Fujishima A, Rao TN and Tryk DA. Titanium dioxide photocatalysis, J. Photochem. Photobiol. C 2000; 1: 1-21 https://doi.org/10.1016/S1389-5567(00)00002-2
  7. Gurr JR, Wang AS, Chen CH and Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells, Toxicology 2005; 213: 66-73 https://doi.org/10.1016/j.tox.2005.05.007
  8. Hussain SM, Hess KL, Gearhart JM, Gelss KT and Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicol. In Vitro 2005; 19: 975-983 https://doi.org/10.1016/j.tiv.2005.06.034
  9. Kaida T, Kobayashi K, Adachi M and Suzuki F. Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics, J. Cosmet. Sci. 2004; 55: 219-220
  10. Kang M, Kim BJ, Cho SM, Chung CH, Kim BW, Han GY and Yoon KJ. Decomposition of toluene using an atmospheric pressure $plasma/TiO_2$ catalytic system, J. Mol. Catal. 2002; 180: 125-133 https://doi.org/10.1016/S1381-1169(01)00417-4
  11. Kimmel W, Ballard S, Ullman BK and Schilling T. Stages of embryonic development in zebrafish, Developmental Dynamics 1995; 203: 253-310 https://doi.org/10.1002/aja.1002030302
  12. Kuhn KP, Chaberny IF, Masholder K, Stickler M, Benz VW, Sonntag HG and Erdinger L. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UV A light, Chemosphere 2003; 53: 71-77 https://doi.org/10.1016/S0045-6535(03)00362-X
  13. Long TC, Saleh N, Tulton RD, Lowry GV and Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity, Environmental Science & Technology 2006; 40 (14): 4346-4352 https://doi.org/10.1021/es060589n
  14. Nakagawa Y, Wakuri S, Sakamoto K and Tanaka N. The photogenotoxicity of titanium dioxide particles, Mutat. Res. 1997; 394: 125-132 https://doi.org/10.1016/S1383-5718(97)00126-5
  15. Ohko Y, Ando, I, Niwa C, Tatsuma T, Yamamura T, Nakashiuma T, Kubota Y and Fujishima A. Degradation of bisphenol A in water by $TiO_2$ photocatalyst, Environ. Sci. Technol. 2001; 35: 2365-2368 https://doi.org/10.1021/es001757t
  16. Ohno T, Sarukawa K, Tokieda K and Matsumura M, Morphology of a $TiO_2$ Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases J. Catal. 2001; 203: 82-86 https://doi.org/10.1006/jcat.2001.3316
  17. Ohno T, Tokieda K, Higashida S and Matsumura M, Synergism between rutile and anatase $TiO_2$ particles in photocatalytic oxidation of naphthalene, Applied Catalysis A: General 2003; 244: 2, 383-391 https://doi.org/10.1016/S0926-860X(02)00610-5
  18. Park K. Toxicity of nanomaterials and strategy of risk assessment, K. Environ. Toxicol. 2005; 20(4): 259-271
  19. Peters K, Unger RE, Kirkpatrick CJ, Gatti AM and Monari E Effects of nano scaled particles on endothelial cell function in vitro, studies on viability, proliferation and inflammation, J. Mater. Sci. Mater. Med. 2004; 15: 321-325 https://doi.org/10.1023/B:JMSM.0000021095.36878.1b
  20. Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG and Schiffmann D. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in syrian hamster embryo fibroblasts, Environ Health Perspect 2002; 110: 797-800 https://doi.org/10.1289/ehp.02110797
  21. Ramires PA, Romito A, Cosentino F and Milella E. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behavior, Biomaterials 2001; 22: 1467-1474 https://doi.org/10.1016/S0142-9612(00)00269-6
  22. Renwlck LC, Donaldson K and Colouterm A. Impairment of alveolar macrophage phagocytosis by ultrafine particles, Toxicol. Appl. Pharmacol. 2001; 172: 119-127 https://doi.org/10.1006/taap.2001.9128
  23. Roy D and Liehr JG. DNA damage and mutation, Mutat. Res. 1999; 424: 107-115 https://doi.org/10.1016/S0027-5107(99)00012-3
  24. Wamer WG, Yin JJ and Wei RR. Oxidative damage to nucleic acids photosensitized by titanium dioxide, Free Radical Biol. Med. 1977; 23: 851-858 https://doi.org/10.1016/S0891-5849(97)00068-3
  25. Warheit DB. Nanoparticles: health impacts?, Materials today 2004; 32-35
  26. Watanabe N, Horikoshi S, Kawabe H, Sugie Y, Zhao J and Hidaka H. Photodegradation mechnism for bisphenol A at the $TiO_2/H_2O$ interfaces, Chemosphere 2003; 52: 851-859 https://doi.org/10.1016/S0045-6535(02)00837-8
  27. Wolf R, Matz H, Orion E and Lipozencic J. Sunscreens-the ultimate cosmetic, Acta Dermatovenerol. Croat. 2003; 11: 158-162
  28. Yeo MK and Cho YJ. Effects of $TiO_2$ Photodegradation on Leaching from epoxy resin chemical in water and biological toxicity, Korea society of environmental toxicology 2004; 19: 3, 271-278
  29. Yeo MK and Kang MS. Photodecomposition of bisphenol A on nanometer-sized $TiO_2$ thin film and the associated biological toxicity to zebrafish (Danio rerio) during and after photocatalysis, Water research 2006; 1906-1914
  30. Yeo MK. The effect of Bisphenol A and nonylphenol on zebrafish embryogenesis, 2003, Korea Society Environmental Health 2003; 29(5): 1-7
  31. Yeo MK and Lee JY. Effects of bisphenol A removal by TiO2 photodegradation in water on development and maturate stage of zebrafish (Danio rerio), Journal of the Korean Environmental Sciences Society 2006; 15: 5, 311-317 https://doi.org/10.5322/JES.2006.15.4.311