• 제목/요약/키워드: nano structure

검색결과 1,957건 처리시간 0.028초

Remote O2 plasma functionalization for integration of uniform high-k dielectrics on large area synthesized few-layer MoSe2

  • Jeong, Jaehun;Choi, Yoon Ho;Park, Dambi;Cho, Leo;Lim, Dong-Hyeok;An, Youngseo;Yi, Sum-Gyun;Kim, Hyoungsub;Yoo, Kyung-Hwa;Cho, Mann?Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.281.1-281.1
    • /
    • 2016
  • Transition metal dichalcogenides (TMDCs) are promising layered structure materials for next-generation nano electronic devices. Many investigation on the FET device using TMDCs channel material have been performed with some integrated approach. To use TMDCs for channel material of top-gate thin film transistor(TFT), the study on high-k dielectrics on TMDCs is necessary. However, uniform growth of atomic-layer-deposited high-k dielectric film on TMDCs is difficult, owing to the lack of dangling bonds and functional groups on TMDC's basal plane. We demonstrate the effect of remote oxygen plasma pretreatment of large area synthesized few-layer MoSe2 on the growth behavior of Al2O3, which were formed by atomic layer deposition (ALD) using tri-methylaluminum (TMA) metal precursors with water oxidant. We investigated uniformity of Al2O3 by Atomic force microscopy (AFM) and Scanning electron microscopy (SEM). Raman features of MoSe2 with remote plasma pretreatment time were obtained to confirm physical plasma damage. In addition, X-ray photoelectron spectroscopy (XPS) was measured to investigate the reaction between MoSe2 and oxygen atom after the remote O2 plasma pretreatment. Finally, we have uniform Al2O3 thin film on the MoSe2 by remote O2 plasma pretreatment before ALD. This study can provide interfacial engineering process to decrease the leakage current and to improve mobility of top-gate TFT much higher.

  • PDF

Analysis of calcium phosphate nanoclusters using the TOF-MEIS

  • Jung, Kang-Won;Park, Jimin;Yang, Ki Dong;Nam, Ki Tae;Moon, DaeWon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.228.2-228.2
    • /
    • 2015
  • We have developed a TOF-MEIS system using 70~100 keV He+. A TOF-MEIS system was designed and constructed to minimize the ion beam damage effect by utilizing a pulsed ion beam with a pulse width < 1 ns and a TOF delay-line-detector with an 120 mm diameter and a time resolution of 180 ps. The TOF-MEIS is an useful tool for interfacial analysis of the composition and structure of nano and bio systems. Our recent applications are reported. We investigated the effect with Polyaspartic Acid (pAsp) and Osteocalcin on the initial bone growth of calcium hydroxyl appatite on a carboxyl terminated surface. When pAsp is not added to the self-assembled monolayers of Ca 2mM with Phosphate 1.2 mM, the growth procedure of calcium hydroxyl appatite cannot be monitored due to its rapid growth. When pAsp is added to the SAMs, the initial grow stage of the Ca-P can be monitored so that the chemical composition and their nucleus size can be analyzed. Firstly discovered the existence of 1-nm-sized abnormal calcium-rich clusters (Ca/P ~ 3) comprised of three calcium ions and one phosphate ion. First-principles studies demonstrated that the clusters can be stabilized through the passivation of the non-collagenous-protein mimicking carboxyl-ligands, and it progressively changes their compositional ratio toward that of a bulk phase (Ca/P~1.67) with a concurrent increase in their size to ~2 nm. Moreover, we found that the stoichiometry of the clusters and their growth behavior can be directed by the surrounding proteins, such as osteocalcin.

  • PDF

밀리미터 스케일의 이상 분해 반응기에 대한 실험적 연구 (Experimental Study on Millimeter Scale Two Phase Catalytic Reactor)

  • 조정훈;이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.265-270
    • /
    • 2004
  • Experiment study on a down scaled two-phase catalytic reactor is presented. As a preliminary step for the development of catalytic reactor, nano-particulate catalyst was prepared. Perovskite La$\_$0.8/Sr$\_$0.2/CoO$_3$is chosen and synthesized as a catalyst considering superior catalytic performance in reduction and oxidation process where oxygen is involved among the reagent. Reactor that has a scale of 2${\times}$10${\times}$25mm was made by machining of A1 block as a layered structure considering further extension to micro-machining. Hydrogen peroxide of 70wt% was adopted as reactant and was provided to the reactor loaded with 1.5 g of catalyst. Reactant flow rate was varied by precision pump with a range of 0.15cc/min to 17.2cc/min. Temperature distribution within reactor was recorded by 3 thermocouples and total amount of liquid product was measured. Temperature distribution and factors that affect temperature were observed and relation between temperature distribution and production rate was also analyzed. Relative time scale plays a significant role in the performance of the reactor. To obtain steady state operation, appropriate ratio of flow rate, catalyst mass and reactor geometry is required and furthermore to get more efficient production rate temperature distribution should be evenly distributed. The database obtained by the experiment will be used as a design parameter for micro reactor.

Eutectic structure evolution of Al2O3-ZrO2-Y2O3 system for apotential hybrid solar cell application

  • Han, Young-Hwan;Yun, Jon-Do;Harada, Yohei;Jeong, Young-Keun;Makino, Taro;Kim, Kwang-Ho;Kwon, Se-Hun;Kim, Young-Moon;Kakegawa, Kazuyuki
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.11.1-11.1
    • /
    • 2009
  • Ternary Al2O3.ZrO2.Y2O3 samples with a eutecticcomposition were prepared by slow cooling. The microstructural evolution wasobserved with X-ray diffraction (XRD), scanning electron microscopy (SEM). TheSEM observation of the ternary samples agreed with the XRD with a completion ofcrystallisation by slow cooling. The target materials commonly have 'cantaloupe skin' microstructures as shown inthe previous studies by Han et al. The nanocomposite may have experienceddifferent cooling rates with two different microstructures, near the surfacehaving experienced optimal conditions for the eutectic reaction during theircooling and thus formed the eutectic microstructure, near the centre havingexperienced a slower cooling rate. The crystallised eutectic ternary Al2O3.ZrO2.Y2O3 system had three different phaseswith a 3Y2O3. 5Al2O3 (yttrium.aluminiumgarnet phase), an alumina phase formed by the eutectic reaction, and a solidsolution of ZrO2 and Y2O3.

  • PDF

나노 구조의 $CeO_2$ 합성과 전기화학적 특성 분석 (Synthesis and electrochemical characterization of nano structure $CeO_2$)

  • 조민영;이재원;박선민;노광철;최헌진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.462-462
    • /
    • 2009
  • $CeO_2$는 고체 산화물 연료전지 (SOFC, soild oxide fuel cell)의 전해질 재료와 CMP(Chemical Mechanical Polishing) 슬러리 재료, 자동차의 3원 촉매, gas sensor, UV absorbent등 여러 분야에서 사용되고 있다. 본 연구에서는 위의 활용범위 외에 $CeO_2$의 구조적 안정성과 빠른 $Ce^{3+}/Ce^{4+}$의 전환 특성을 이용하여 lithium ion battery의 anode 재료로서 전기화학적 특성을 알아보고자 실험을 실시하였다. $CeO_2$ 합성에 사용되는 전구체인 cerium carbonate의 형상 및 크기, 비표면적과 같은 물리화학적 특성이 $CeO_2$ 분말의 특성에 직접적인 영향을 주기 때문에 전구체의 합성 단계에서 입자의 특성을 조절하였다. 전구체 합성의 출발원료로 cerium nitrate hexahydrate 와 ammonium carbonate를 사용하였고 반응온도 및 농도 등을 변화시켜 입자의 형상 및 결정상을 fiber형태의 orthorombic $Ce_2O(CO_3)_2{\cdot}H_2O$와 구형의 hexagonal $CeCO_3OH$의 세리아 전구체를 합성하였다. 이를 $300^{\circ}C$에서 30분 동안 하소하여 전구체의 입자형상을 유지하는 cubic $CeO_2$를 합성하고 X-ray diffraction, FE-SEM, micropore physisorption analyzer 분석을 통하여 입자의 결정상과 형상, 비표면적 등을 비교 분석하고 $Li/CeO_2$ couple의 충,방전 용량과 수명특성을 비교 분석하여 $CeO_2$의 전기화학적 특성을 알아보았다.

  • PDF

2,7-Naphthalene Ligand Compounds의 전기화학 및 분광학적 특성 (Electrochemical and Spectrum Properties of 2,7-Naphthalene Ligand Compounds)

  • 최돈수;김무영;형경우
    • 한국재료학회지
    • /
    • 제19권9호
    • /
    • pp.510-515
    • /
    • 2009
  • The compound of 2,6-Bis[(9-phenylcarbazolyl)ethenyl]naphthalene (BPCEN-1), 2-[6-{1-Cyano-2-(9-phenylcarbazoly)vinyl}naphthyl]-3-(9-phenylcarbazolyl)acrylonitrile (BPCEN-2), 2,6-Bis[{4-(1-naphthy l)phenylamino} styrenyl] naphthalene (BNPASN-1), 2-[6-{1-Cyano-2-(naphthylphenylaminophenyl) vinyl}naphthyl]-3-(naphthylphenylaminophenyl)acrylonitrile (BNPASN-2) was analyzed electrochemically and spectroscopically and can be obtained by bonding phenylcarbazolyl, naphthylphenylaminophenyl and -CN ligands to 2,7-naphthalene. The electrochemical and spectroscopic study resulted in the P-type (BPCEN-1, BNPASN-1) being changed to N-type (BPCEN-2, BNPASN-2) according to -CN bonding despite having the same structure. The value of band gap(Eg) was revealed to be small as HOMO had shifted higher and LUMO lower. The Eg value for naphthylphenylaminophenyl ligand was reduced because it has a smaller HOMO/LUMO value than that of phenylcarbazolyl from a structural perspective. The electrochemical HOMO/LUMO values for BPCEN-1, BPCEN-2, BNPASN-1, BNPASN-2 were measured to be 5.55eV / 2.83eV, 5.73eV / 3.06eV, 5.48eV / 2.78eV, and 5.53eV / 2.98eV, respectively. By -CN ligand, the UV max, Eg and PL max were shifted to longer wavelength in their spectra and the luminescence band could be also confirmed to be broad in the photoluminescence (PL) spectrum.

증착온도를 달리하여 제조한 Zn0.8Co0.2O 박막의 미세조직 및 자기 특성 (Microstructure and Magnetic Properties of Pulsed DC Magnetron Sputtered Zn0.8Co0.2O Film Deposited at Various Substrate Temperatures)

  • 강영훈;김봉석;태원필;김기출;서수정;박태석;김용성
    • 한국세라믹학회지
    • /
    • 제43권2호
    • /
    • pp.79-84
    • /
    • 2006
  • We studied the microstructure and magnetic property of the pulsed DC magnetron sputtered $Zn_{\0.8}Co_{0.2}O$ film as a function of substrate temperatures. The X-ray patterns of the $Zn_{\0.8}Co_{0.2}O$ film showed a strong (002) preferential orientation at $500^{\circ}C$. The films with a crystallite size of 23-35 nm were grown in the form of nano-sized structure and this tendency was remarkable with increasing substrate temperature. The UV-visible result showed that the $Zn_{\0.8}Co_{0.2}O$ film prepared above $300^{\circ}C$ has a high optical transmittance of over $80\%$ in the visible region. The absorption bands were observed due to sp-d interchange action by $Co^{2+}$ complex ion and dd transition in the region from 500 to 700nm. The resistivity of the film was below $10^{-1}\;\Omega-cm\;above\;300^{\circ}C$. The AGM analysis results for the all films showed the magnetic hysteresis curves of ferromagnetic nature. The low electrical resistivity and room temperature ferromagnetism of ZnCoO thin films 'deposited above $300^{\circ}C$ suggested the possibility for the application to Diluted Magnetic Semiconductors (DMSs).

탄소첨가한 Li3V2(PO4)3의 합성 및 전기화학적 특성 (Synthesis and Electrochemical Characteristics of Carbon added Li3V2(PO4)3)

  • 조영임;나병기
    • 전기화학회지
    • /
    • 제15권2호
    • /
    • pp.101-108
    • /
    • 2012
  • 본 연구에서는 탄소를 첨가하여 $Li_3V_2(PO_4){_3}$의 낮은 전기전도도를 개선시켜서 고율 방전특성, 충 방전 사이클 특성을 향상시키는 것을 목적으로 하고 있다. 탄소 첨가제로는 글루코스와 CNT (carbon nano tube)를 사용하였으며, 탄소의 첨가 여부와 탄소 원료의 종류에 따라 합성된 $Li_3V_2(PO_4){_3}$의 구조적 그리고 전기화학적 특성에 대해 연구를 하였다. $Li_3V_2(PO_4){_3}$$Li_3V_2(PO_4){_3}$/C의 $Li_3V_2(PO_4){_3}$/CNT의 합성방법으로는 고상법을 이용하였다. 합성된 물질을 수소환원방법을 통하여 600, 700, 800, $900^{\circ}C$에서 소성해주었다. 합성된 물질로 양극 집전판을 제작하여 상대전극을 리튬메탈로 한 Coin 2032 cell을 만들어 전기화학적 특성분석을 진행하였다. 전지테스트는 정전류법을 이용하여 3.0~4.8 V까지 충 방전 실험을 하였다.

에어로졸 증착법(Aerosol Depostion method)에 의한 $Ba(Zr_{0.85}Y_{0.15})O_{3-\delta}$-NI 수소분리막 제조 ($Ba(Zr_{0.85}Y_{0.15})O_{3-\delta}$-NI Composite Membrane for Hydrogen Separation by Aerosol Deposition Method)

  • 박영수;최진섭;변명섭;김진호;황광택
    • 한국수소및신에너지학회논문집
    • /
    • 제21권4호
    • /
    • pp.271-277
    • /
    • 2010
  • $(Ba(Zr_{0.85}Y_{0.15})O_{3-\delta})$ oxide, showing high protonic conductivity at high temperatures and good chemical stability with $CO_2$ are referred to as hydrogen separation membrane. For high efficiency of hydrogen separation ($H_2$ flux and selectivity) and low fabrication cost, ultimate thin and dense BZY-Ni layer has to be coated on a porous substrate such as $ZrO_2$. Aerosol depostion (AD) process is a novel technique to grow ceramic film with high density and nano-crystal structure at room-temperature, and may be applicable to the fabrication process of AD integration ceramic layer effectively. XRD, SEM, X-ray mapping measurements were conducted in order to analyze the characteristics of BZY-Ni membrane fabricated by AD process. it is observed that it is homogeneous distribution for BZY-Ni. The result of $H_2$ permeation rate suggests that BZY-Ni composite is higher than BZY.

방전가공면을 복제한 실리콘수지 표면의 발수특성연구 (Hydrophobic Characteristics of a Silicone Resin Surface Produced by Replicating an Electric Discharge Machined Surface)

  • 김영훈;홍석관;이상용;이성희;김권희;강정진
    • 소성∙가공
    • /
    • 제22권1호
    • /
    • pp.23-29
    • /
    • 2013
  • In this study, a micro/nano-random-pattern-structure surface was machined by electric discharge machining (EDM) followed by replicating the EDM surface with a silicone elastomer having low energy and greater hydrophobicity. The variation of hydrophobicity was of prime interest and was examined as a function of the surface roughness of the replicated silicone elastomer. The hydrophobicity was evaluated by the water contact angle (WCA) measured on the relevant surface. For the experiments, the original surfaces were machined by die sinking electric discharge machining (DS-EDM) and wire cutting electric discharge machining (WC-EDM). The ranges of surface roughness were Ra $0.8{\sim}19{\mu}m$ for the DS-EDM and Ra $0.5{\sim}4.7{\mu}m$ for the WC-EDM. In order to fabricate a hydrophobic surface, the EDM surfaces were directly replicated using a liquid-state silicone elastomer, which was thermally cured. The measured WCA on the replicated surfaces for DS-EDM was in the range of $115{\sim}130^{\circ}$ and for WC-EDM the WCA was in the range of $123{\sim}150^{\circ}$. Additionally, the dynamic hydrophobicity was evaluated by measuring an advancing and a receding WCA on the replicated silicone elastomer surfaces.