DOI QR코드

DOI QR Code

Electrochemical and Spectrum Properties of 2,7-Naphthalene Ligand Compounds

2,7-Naphthalene Ligand Compounds의 전기화학 및 분광학적 특성

  • Published : 2009.09.27

Abstract

The compound of 2,6-Bis[(9-phenylcarbazolyl)ethenyl]naphthalene (BPCEN-1), 2-[6-{1-Cyano-2-(9-phenylcarbazoly)vinyl}naphthyl]-3-(9-phenylcarbazolyl)acrylonitrile (BPCEN-2), 2,6-Bis[{4-(1-naphthy l)phenylamino} styrenyl] naphthalene (BNPASN-1), 2-[6-{1-Cyano-2-(naphthylphenylaminophenyl) vinyl}naphthyl]-3-(naphthylphenylaminophenyl)acrylonitrile (BNPASN-2) was analyzed electrochemically and spectroscopically and can be obtained by bonding phenylcarbazolyl, naphthylphenylaminophenyl and -CN ligands to 2,7-naphthalene. The electrochemical and spectroscopic study resulted in the P-type (BPCEN-1, BNPASN-1) being changed to N-type (BPCEN-2, BNPASN-2) according to -CN bonding despite having the same structure. The value of band gap(Eg) was revealed to be small as HOMO had shifted higher and LUMO lower. The Eg value for naphthylphenylaminophenyl ligand was reduced because it has a smaller HOMO/LUMO value than that of phenylcarbazolyl from a structural perspective. The electrochemical HOMO/LUMO values for BPCEN-1, BPCEN-2, BNPASN-1, BNPASN-2 were measured to be 5.55eV / 2.83eV, 5.73eV / 3.06eV, 5.48eV / 2.78eV, and 5.53eV / 2.98eV, respectively. By -CN ligand, the UV max, Eg and PL max were shifted to longer wavelength in their spectra and the luminescence band could be also confirmed to be broad in the photoluminescence (PL) spectrum.

Keywords

References

  1. C Tang and S Van Slyke, Appl. Phys. Lett., 51, 913 (1987) https://doi.org/10.1063/1.98799
  2. S. Tao, S. Xu and X. Zhang, Chem. Phys. Lett., 429, 622 (2006) https://doi.org/10.1016/j.cplett.2006.08.086
  3. S. Jeon, Y. Jeon, J. Kim, C. Lee and M. Kong, Synth. Met., 157, 558(2007) https://doi.org/10.1016/j.synthmet.2007.06.005
  4. Y. Zhang, F. He, G. Cheng, C. Ruan, Y Lin, Y. Zao , Y. Ma and S. Liu, Semicond. Sci. Technol. 22, 214 (2007) https://doi.org/10.1088/0268-1242/22/3/007
  5. Y. Wang, Y. Hua, X. Wu, L. Zhang, Q. Hou, F. Guan, N. Zhang, S. Yin and X Cheng, Organic Electronics, 9, 101 (2008) https://doi.org/10.1016/j.orgel.2007.09.006
  6. S. Hsu, C. Lee, S. Hwang, H. Chen, C. Chen and A. T. Hu, Thin Solid Films, 478, 271 (2005) https://doi.org/10.1016/j.tsf.2004.10.038
  7. H. Li, Y. Lin, P Chou, Y. Cheng and R. Liu, Adv. Funct. Mater., 17, 520 (2007) https://doi.org/10.1002/adfm.200600187
  8. J. Jou, M. Wu, C. Wang, Y. Chiu, P. Chiang, H. Hu and R. Wang, Organic Electron., 8, 735 (2007) https://doi.org/10.1016/j.orgel.2007.06.010
  9. M. Ho, C. Chang, T. Chu, T. Chen and C. Chen, Organic Electron., 9, 692 (2008) https://doi.org/10.1016/j.orgel.2008.05.001
  10. Z. Xie, W. Xie, F. Li, L. Liu, H. Wang and Y. Ma, J. Phys. Chem. C, 112, 9066 (2008) https://doi.org/10.1021/jp801033j
  11. F. He, L. Tian, W. Xie, M. Li, Q. Gao and M. Hanif, J. Phys. Chem. C, 112, 12024 (2008) https://doi.org/10.1021/jp8029049
  12. G. Cheng, F. He, Y. Zhao, Y. Duan, H. Zhang, B. Yang, Y. Ma and S. Liu, Semicond. Sci. Technol., 19, L78 (2004) https://doi.org/10.1088/0268-1242/19/7/L03
  13. F. He, H. Xu, B Yang Y. Duan, L. Tian, K. Huang, Y. Ma, S. Liu, S. Feng and J. Shen, Adv. Mater., 17, 2710 (2005) https://doi.org/10.1002/adma.200501239
  14. Y. Duan, Y. Zhao, P. Chen, J. Li and S. Liu, Appl. Phys. Lett., 88, 263503 (2006) https://doi.org/10.1063/1.2215607
  15. P. J. Chung and M. J. Cho, Mol. Liq. Cryst., 405, 153 (2003) https://doi.org/10.1080/15421400390263569
  16. J. H. Lee, H. L. Choi and B. Lee, Kor. J. Mater. Res., 15(8), (2005) https://doi.org/10.3740/MRSK.2005.15.8.543
  17. J. G. Jang, S. J. Shin, E. J. Kang, H. W. Kim, H. J. Chang, M. H. Oh, Y. S. Kim, J. Y. Lee, M.S. Gong and Y.K. Lee, Kor. J. Mater. Res., 16(4), 253 (2006) https://doi.org/10.3740/MRSK.2006.16.4.253
  18. D. Choi, T. Kim, Mol. Liq. Cryst., 405, 153(2003) https://doi.org/10.1080/15421400390263569