• Title/Summary/Keyword: nano structure

Search Result 1,960, Processing Time 0.033 seconds

Phase Change of Precipitates and Age Hardening in Rapidly Solidified Mg-Zn-Ca Base Alloys

  • Park Won-Wook;You Bong-Sun
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.303-308
    • /
    • 2005
  • Various kinds of Mg-Zn-Ca base alloys were rapidly quenched via melt spinning process. The meltspun ternary and quaternary alloy ribbons were heat-treated, and then the effects of additional elements on age hardening behavior and phase change of precipitates were investigated using Vickers hardness tester, XRD, and TEM equipped with EDS system. In ternary alloys, age hardening was mostly due to the distribution of $Mg_6Ca_2Zn_3$ and $Mg_2Ca$. The stable phases of precipitates were varied according to the aging temperature and the alloy composition. With the increase of Ca content, $Mg_2Ca$ precipitates were detected more than $Mg_6Ca_2Zn_3$ precipitates. In quaternary alloys, the precipitates taken from Mg-Zn-Ca-Co were identified as new quaternary phase, whereas those taken from Mg-Zn-Ca-Zr as MgZnCa containing Zr. In general, the ternary alloy showed higher peak hardness and thermal stability than the quaternary considering the total amounts of the solutes. It implies that the structure of precipitate should be controlled to have the coherent interface with the Mg matrix.

Effect of Crystal Structures on the Sensing Properties of Nanophase $SnO_2$ Gas Sensor (나노상 $SnO_2$ 가스센서에서 센서검지특성에 미치는 결정구조의 영향)

  • 안재평;김선호;박종구;허무영
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.98-103
    • /
    • 2001
  • Metallic tin powder with diameter less than 50 nm was synthesized by inert gas condensation method and subsequently oxidized to tin oxide ($SnO_2$) along the two heat-treatment routes. The $SnO_2$ powder of single phase with a tetragonal structure was obtained by the heat-treatment route with intermediate annealing step-wise oxidation, whereas the $SnO_2$ powder with mixture of orthorhombic and tetragonal phases was obtained by the heat-treatment route without intermediate annealing (direct oxidation). $SnO_2$ gas sensors fabricated from the nano-phase $SnO_2$ powders were investigated by structural observations as well as measurement of electrical resistance. The $SnO_2$ gas sensors fabricated from the mixed-phase powder exhibited much lower sensitivity against $H_2$ gas than those fabricated from the powder of tetragonal phase. Reduced sensitivity of gas sensors with the new orthorhombic phase was attributed to detrimental effects of phase boundaries between orthorhombic and tetragonal phases and many twin boundaries on the charge mobility.

  • PDF

Development of High Performance Indium Tin Oxide Films at Room Temperature by Plasma-Damage Free Neutral Beam Sputtering System

  • Jang, Jin-Nyoung;Oh, Kyoung-Suk;Yoo, Suk-Jae;Kim, Dae-Chul;Lee, Bon-Ju;Yang, Ie-Hong;Moon, Ji-Sun;Kim, Jong-Sik;Choi, Soung-Woong;Park, Young-Chun;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1715-1718
    • /
    • 2007
  • New ITO thin film of good performance has been developed by brand-new, plasma-damage-free sputtering process at the room temperature. The room temperature-processed ITO films with optimized conditions as neutral beam acceleration bias of -30V and In & Sn composition ratio of 99:01 gives lower resistivity as $4.22{\times}10^{-4}{\Omega}-cm$ and higher transmittance over 90% a wavelength of 550 nm. The transmission electron microscope (TEM) images of the films show a nano-crystalline structure.

  • PDF

Luminescence characteristics of YAG:Ce phosphor by combustion method (산화법에 의한 YAG:Ce 형광체의 발광 특성)

  • Choi, Hyung-Wook;Lee, Seung-Kyu;Cha, Jae-Hyeck;Park, Yong-Seo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.322-323
    • /
    • 2006
  • The nano-sized Ce-doped YAG(Yttrium Aluminum Garnet, $Y_3Al_5O_{12}$) phosphor powders were prepared by combustion method from a mixed aqueous solution of metal nitrates, using citric acid as a fuel. The luminescence formation process and structure of phosphor powders were investigated by means of XRD, SEM and PL. The XRD patterns show that YAG phase can form at all of the $Ce^{3+}$ concentration. However, when $Ce^{3+}$ concentration is over 2.0mol%, XRD patterns show $CeO_2$ peak between (321) peak and (400) peak. The pure crystalline YAG:Ce with uniform size of 30nm was obtained at 0.6mol% of the $Ce^{3+}$ concentration. The crystalline YAG:Ce powders showed broad emission peaks in the range 475~630nm and had maximum intensity at 526nm.

  • PDF

Fabrication of SOI FinFET devices using Aresnic solid-phase-diffusion (비소 고상확산방법을 이용한 MOSFET SOI FinFET 소자 제작)

  • Cho, Won-Ju;Koo, Hyun-Mo;Lee, Woo-Hyun;Koo, Sang-Mo;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.133-134
    • /
    • 2006
  • A simple doping method to fabricate a very thin channel body of the n-type fin field-effect-transistor (FinFET) with a 20 nm gate length by solid-phase-diffusion (SPD) process is presented. Using As-doped spin-on-glass as a diffusion source of arsenic and the rapid thermal annealing, the n-type source-drain extensions with a three-dimensional structure of the FinFET devices were doped. The junction properties of arsenic doped regions were investigated by using the $n^+$-p junction diodes which showed excellent electrical characteristics. Single channel and multi-channel n-type FinFET devices with a gate length of 20-100 nm was fabricated by As-SPD and revealed superior device scalability.

  • PDF

Effects of Sputtering Pressure on the Properties of BaTiO3 Films for High Energy Density Capacitors

  • Park, Sangshik
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.207-213
    • /
    • 2014
  • Flexible $BaTiO_3$ films as dielectric materials for high energy density capacitors were deposited on polyethylene terephthalate (PET) substrates by r.f. magnetron sputtering. The growth behavior, microstructure and electrical properties of the flexible $BaTiO_3$ films were dependent on the sputtering pressure during sputtering. The RMS roughness and crystallite size of the $BaTiO_3$ increased with increasing sputtering pressure. All $BaTiO_3$ films had an amorphous structure, regardless of the sputtering pressures, due to the low PET substrate temperature. The composition of films showed an atomic ratio (Ba:Ti:O) of 0.9:1.1:3. The electrical properties of the $BaTiO_3$ films were affected by the microstructure and roughness. The $BaTiO_3$ films prepared at 100 mTorr exhibited a dielectric constant of ~80 at 1 kHz and a leakage current of $10^{-8}A$ at 400 kV/cm. Also, films showed polarization of $8{\mu}C/cm^2$ at 100 kV/cm and remnant polarization ($P_r$) of $2{\mu}C/cm^2$. This suggests that sputter deposited flexible $BaTiO_3$ films are a promising dielectric that can be used in high energy density capacitors owing to their high dielectric constant, low leakage current and stable preparation by sputtering.

Influence of Nanodispersed Organoclay on Rheological and Swelling Properties of Ethylene Propylene Diene Terpolymer

  • Acharya Himadri;Srivastava Suneel K.
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.132-139
    • /
    • 2006
  • The dispersion of organoclay in ethylene propylene diene terpolymer (EPDM) matrix was correlated with the rheological and swelling properties of nanocomposites. X-ray diffraction pattern (XRD) and transmission electron microscopic (TEM) analysis exhibited the disordered-intercalated structure of EPDM/organoclay nanocomposite. The extent of the disordered phase increased with increasing organoclay content up to a limiting value of 3 wt% after which equilibrium tended towards intercalation. The dispersion effect of organoclay in EPDM matrix was clarified by the physicochemical properties like rheological response and swelling thermodynamics in toluene. The increase in viscoelastic properties of EPDM nanocomposite with increasing organoclay content up to 3 wt%, followed by a subsequent decrease up to 4 wt%, was correlated in terms of the disordered and ordered states of the dispersed nano-clay sheets. Swelling measurements revealed that the change in entropy of the swelling increased with the increase in disorder level but decreased with the increase in intercalation level of organoclay in the disordered-intercalated nanocomposite. The increase in solvent uptake was comparable with the free volume in EPDM matrix upon inclusion of silicate particles, whereas the inhibition in solvent uptake for higher organoclay loading was described by bridging flocculation.

Effects of laser power on hardness and microstructure of the surface melting hardened SKD61 hot die steel using Yb:YAG disk laser (Yb:YAG 디스크로 레이저 표면 용융 경화된 SKD61 열간금형강의 경도와 미세조직에 미치는 레이저 출력의 영향)

  • Lee, Kwang-Hyeon;Choi, Seong-Won;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.54-61
    • /
    • 2015
  • In this study, effect of laser power on hardness and microstructure of SKD61 Hot Die steel of which surface was melted and hardened with Yb:YAG disk laser was investigated. Beam speed was fixed at 70 mm/sec and distance between them was 0.8 mm about Laser surface melting. The only thing that was changed laser power. Laser powers were 2.0, 2.4 and 2.8 kW. No defect was found under all conditions. As the laser power increased, the penetration depth were deepened and the bead width was also widened. There was no hardness deviation of fusion zone at same laser power and it was higher than that of heat affected zone. In addition, the more laser power increased, the more hardness in fusion zone decreased. Fusion zone was macroscopically dendrite structure. However, core matric in dendrite was lath martensite of 100 nm size. There were $M_{23}C_6$ of 500 nm and the VC and $Mo_2C$ of a nano meters on boundary of dendrite.

Magnetoelectric Effects in (Bi,La)FeO3-PbTiO3 Ceramics ((Bi,La)FeO3-PbTiO3 세라믹스의 자전효과)

  • Lee Eun Gu;Lee Jong Kook;Jang Woo Yang;Kim Sun Jae;Lee Jae Gab
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.121-125
    • /
    • 2005
  • Magnetoelectric (ME) effects for lanthanum modified $BiFeO_3-PbTiO_3\;(BE-_xPT)$ solid solutions have been investigated. The value of magnetoelectric polarization coefficient, up is 10 times greater than that of $Cr_2O_3$. The results also show that up is due to a linear coupling between polarization and magnetization, and that up is independent of do magnetic bias and ac magnetic field. The ME effect is believed to be significantly enhanced due to breaking of the cycloidal spin state of a long-period spiral spin structure, via randomly distributed charged imperfections.

Synchrotron X-ray Reflectivity Studies on Nanoporous Low Dielectric Constant Organosilicate Thin Films

  • Oh, Weon-Tae;Park, Yeong-Do;Hwang, Yong-Taek;Ree, Moon-Hor
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2481-2485
    • /
    • 2007
  • Spatially resolved, quantitative, non-destructive analysis using synchrotron x-ray reflectivity (XR) with subnano-scale resolution was successfully performed on the nanoporous organosilicate thin films for low dielectric applications. The structural information of porous thin films, which were prepared with polymethylsilsesquioxane and thermally labile 4-armed, star-shaped poly(ε-caprolactone) (PCL) composites, were characterized in terms of the laterally averaged electron density profile along with a film thickness as well as a total thickness. The thermal process used in this work caused to efficiently undergo sacrificial thermal degradation, generating closed nanopores in the film. The resultant nanoporous films became homogeneous, well-defined structure with a thin skin layer and low surface roughness. The average electron density of the calcined film reduced with increase of the initial porogen loading, and finally leaded to corresponding porosity ranged from 0 to 22.8% over the porogen loading range of 0-30 wt%. In addition to XR analysis, the surface and the inner structures of films are investigated and discussed with atomic force and scanning electron microscopy images.