• Title/Summary/Keyword: nano scratch

Search Result 82, Processing Time 0.023 seconds

Maskless Fabrication of the Silicon Stamper for PDMS Nano/Micro Channel (나노/마이크로 PDMS 채널 제작을 위한 마스크리스 실리콘 스템퍼 제작 및 레오로지 성형으로의 응용)

  • 윤성원;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.326-333
    • /
    • 2004
  • The nanoprobe based on lithography, mainly represented by SPM based technologies, has been recognized as a potential application to fabricate the surface nanosctructures because of its operational versatility and simplicity. However, nanoprobe based on lithography itself is not suitable for mass production because it is time a consuming method and not economical for commercial applications. One solution is to fabricate a mold that will be used for mass production processes such as nanoimprint, PDMS casting, and others. The objective of this study is to fabricate the silicon stamper for PDMS casting process by a mastless fabrication technique using the combination of nano/micro machining by Nanoindenter XP and KOH wet etching. Effect of the Berkovich tip alignment on the deformation was investigated. Grooves were machined on a silicon surface, which has native oxide on it, by constant load scratch (CLS), and they were etched in KOH solutions to investigate chemical characteristics of the machined silicon surface. After the etching process, the convex structures was made because of the etch mask effect of the mechanically affected layer generated by nanoscratch. On the basis of this fact, some line patterns with convex structures were fabricated. Achieved groove and convex structures were used as a stamper for PDMS casting process.

Nanotube shape on the Ti-29Nb-xHf alloys with applied potentials

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.119-119
    • /
    • 2016
  • Over the last years the anodic formation of ordered $TiO_2$ nanotube layers has created significant scientific interest. Titanium oxide nanotube formation on the titanium or titanium alloy surface is expected to be important to improve cell adhesion and proliferation under clinical conditions. It should be possible to control the nanotube size and morphology for biomedical implant use by controlling the applied voltage, alloying element, current density, anodization time, and electrolyte. $TiO_2$ nanotubes show excellent biocompatibility, and the open volume in the tubes may be exploited as a drug release platform and so on. Therefore, in this study, Nanotube shape on the Ti-29Nb-xHf alloys with applied potentials was reserched. $TiO_2$ nanotube formation on Ti-29Nb-xHf alloys was carried out using anodization technique as a function of applied DC potential (10 V to 30 V and 30 V to 10 V) and anodization time for 60~120 min in $1MH_3PO_4$ with small additions of (0.8 wt. %, to 1.2 wt. %) NaF. The morphology change of anodized Ti-29Nb-xHf alloys was determined by FE-SEM, XRD, and EDS.

  • PDF

Corrosion Behavior of Hard Coated Ti-Zr-N Film on the Tool Steels

  • Eun, Sang-Won;Choe, Han-Cheol
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.289-293
    • /
    • 2010
  • To investigate the corrosion behavior of tools steel surface in various coating film, the surface of hard coated Ti-Zr-N film on the tool steel by using magnetron-sputtering methods was researched using various experimental methods. STD 61 steels were manufactured by using vacuum furnace and solutionized for 1hr at $1050^{\circ}C$. Steel surface was coated with Ti-Zr-N film at $150^{\circ}C$ and 100W for 1h by using DC-sputtering equipment. Surface characteristics of Ti-Zr-N film coated specimens were investigated by OM, XRD, FE-SEM and nano-scratch tester. And corrosion behaviors of the coated specimen were investigated by polarization test and electrochemical impedance spectroscopy(EG&G Co, PARSTAT 2273. USA). It was found that Ti-Zr-N film coated sample had a thick coated layer and showed a good wear resistance and corrosion resistance of surface compared with ZrN and TiN coated sample. The corrosion resistance and mechanical property of Ti-Zr-N film coated STD 61 alloy increased as sputtering time increased.

Mechanical Properties of PMMA / Alumina Composites Fused by Heat Treatment (용융 열처리한 PMMA/Alumina 복합체의 기계 특성)

  • Kim, D.J.;Ryu, S.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.120-125
    • /
    • 2018
  • The PMMA composited material mixed with alumina studied to find the optimal condition, the adequate ratio of mixing, for the associated mechanical properties such as anti-corrosive, weatherproof performance. The 80% of hardness and 52% of scratch coefficient improved according to increasing ratio of alumina, which is mostly 3 times higher than that of pure PMMA, on other hand 16% of tensile strength and 35% of flexural strength has lost while alumina was adding in. The most proper ratio, having the best availability in substantial production, of composite between pure PMMA and alumina is determined as 93 wt. % vs 7 wt. %. Results of related five properties had estimated by using of a pentagram.

Thick Copper Substrate Fabrication by Air-Cooled Lapping and Post Polishing Process (공기 냉각 방식의 래핑을 이용한 구리 기판 연마 공정 개발)

  • Lee, Ho-Cheol;Kim, Dong-Jun;Lee, Hyun-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.616-621
    • /
    • 2010
  • New type of the base material of the light-emitting diode requires copper wafer in view of heat and electrical conductance. Therefore, polishing process of the substrate level is needed to get a nanometer level of surface roughness as compared with pattern structure of nano-size in the semiconductor industry. In this paper, a series of lapping and polishing technique is shown for the rough and deflected copper substrate of thickness 3mm. Lapping by sand papers tried air cooling method. And two steps of polishing used the diamond abrasives and the $Al_2O_3$ slurry of size 100mm considering the residual scratch. White-light interferometer proved successfully a mirror-like surface roughness of Ra 6nm on the area of $0.56mm{\times}0.42mm$.

Improvement of Adhesion Strength of DLC Films on Nitrided Layer Prepared by Linear Ion Source

  • Shin, Chang-Seouk;Kim, Wang-Ryeol;Park, Min-Seok;Jung, Uoo-Chang;Chung, Won-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.177-179
    • /
    • 2011
  • The purpose of this study is to enhance an adhesion between substrate and Diamond-like Carbon (DLC) film. DLC has many outstanding properties such as low friction, high wear resistance and corrosion resistance. However, it is difficult to achieve enough adhesion because of weak bonding between DLC film and the substrate. For improvement adhesion, a layer between DLC film and the substrate was prepared by dual post plasma. DLC film was deposited on nitrided layer by linear ion source. The composed compound layer between substrate and DLC film was investigated by Glow Discharge Spectrometer (GDS) and Scanning Electron Microscope (SEM). The synthesized bonding structure of DLC film was analyzed using a micro raman spectrometer. Mechanical properties were measured by nano-indentation. In order to clarify the mechanism for improvement in adhesive strength, it was observed by scratch test.

  • PDF

Improvement in Adhesion of the Indium Zinc Oxide (IZO) Thin Films on Organic Polymer Films

  • Lee, Yeong-Beom;Kim, Kyong-Sub;Ko, Min-Jae;Kim, Kyung-Seop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.537-539
    • /
    • 2009
  • We report the improvement in adhesion of IZO thin films through oxygen ($O_2$) plasma treatment of organic polymer film. In conclusion, the $O_2$ plasma treatment of an organic polymer film was accomplished with improving ca. 1.8 times in adhesion than that of the only general etch treatment on the same organic polymer film.

  • PDF

The Effects of Interlayer on the DLC Coating (중간층이 DLC 코팅에 미치는 영향)

  • Song, Jin-Soo;Nam, Tae-Woon
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.65-70
    • /
    • 2011
  • DLC is considered as the candidate material for application of moving parts in automotive components relatively in high pressure and temperature operating conditions for its high hardness with self lubrication and chemical inertness. The properties of interlayer between the substrate and the DLC film were studied. Arc ion plating method have been employed to deposit onto substrate and sputtering method was used for synthesizing DLC onto interlayer. Among these six types of interlayer, deposited DLC film onto TiCN showed excellent value for characteristics. From the results of analysis for physical properties of DLC films, it seems that the adhesion forces were more important factors than intrinsic mechanical properties such as hardness, roughness and wear resistance of DLC films. AFM(Atomic Force Microscope) was used for understanding roughness of DLC films. Hardnesses of the coating layers were identified by nano-indentation method and adhesions were checked by scratch method.

Effects of nano-particles additions on the adhesion propertis of coating layer (나노 입자 첨가에 따른 도장막의 부착력 평가)

  • Lee, Hyeon-Ju;U, Seong-Min;Kim, Ho-Hyeong;Hwang, Tae-Jin;Kim, Yang-Do
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.70-70
    • /
    • 2011
  • 표면처리는 전기적, 물리적, 화학적 처리방법 등을 통해 보호표면을 생성시킴으로서 재료의 외관미화, 내마모성, 전기절연, 전기전도성 부여 등의 폭넓은 목적을 달성시키고자 하는 일련의 조작을 말한다. 최근 스마트 휴대폰으로 대표되는 이동통신기기 산업의 빠른 성장으로 인하여 이들 기기를 보호하기 위한 표면 처리기술도 함께 발전하고 있다. 그중 대표적인 것이 나노기술을 융합한 보호막 도장기술이다. 나노입자를 분산하거나 나노상(phase)을 융합하여 제품의 표면에 보호막을 도장하는 기술이며, 그 주된 목적은 내 스크래치, 내 부식 등의 물리 화학적 보호기능을 수행하도록 층(layer)을 형성하는 것이다. 본 연구에서는 제조된 실리카 나노입자와 유기물을 사용하여 휴대폰 케이스에 도장막을 형성하였고, Scratch, Wear, hardness Test등의 분석을 통하여 유무기 하이브리드 도장막의 특성을 평가하였다.

  • PDF

Study on the Masking Effect of the Nanoscratched Si (100) Surface and Its Application to the Maskless Nano Pattern fabrication (마스크리스 나노 패턴제작을 위한 나노스크래치 된 Si(100) 표면의 식각 마스크 효과에 관한 연구)

  • 윤성원;강충길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.24-31
    • /
    • 2004
  • Masking effect of the nanoscratched silicon (100) surface was studied and applied to a maskless nanofabrication technique. First, the surface of the silicon (100) was machined by ductile-regime nanomachining process using the scratch option of the Nanoindenter${ \circledR}$ XP. To clarify the possibility of the nanoscratched silicon surfaces for the application to wet etching mask, the etching characteristic with a KOH solution was evaluated at room temperature. After the etching process, the convex nanostructures were made due to the masking effect of the mechanically affected layer. Moreover, the height and the width of convex structures were controlled with varying normal loads during nanoscratch.