• 제목/요약/키워드: nano material

검색결과 2,443건 처리시간 0.032초

Spin Seebeck Effect in $SiO_2$/[Py/Pt-strips]

  • Kim, Sang-Il;Park, Seung-Young;Min, Byoung-Chul;Jo, Young-Hun;Lee, Kyung-Jin;Shin, Kyung-Ho
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2011년도 자성 및 자성재료 국제학술대회
    • /
    • pp.72-73
    • /
    • 2011
  • PDF

시멘트의 수화특성에 대한 유·무기 복합 나노실리카의 영향 (Influence of Nano Silica Dispersant on Hydration Properties of Cementitious Materials)

  • 강현주;송명신;박종헌;송수재
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.510-515
    • /
    • 2011
  • In this study, as a material used to replace silica fumes for high strength concrete, nano-silica compound with organic functional group for dispersion and with inorganic silica group that can cause a pozzolan reaction is synthesized, These nano silica compound is divided into IC, which is nano size $SiO_2$ with irregularly combined hydroxyl group and carboxyl group, and RC, which is nano size $SiO_2$ with regularly combined hydroxyl group and carboxyl group. The effects of these nano silica compound on the hydration of cement are reviewed. As a result, all of synthesized nano-silica compounds have excellent dispersion on the cement flow, we think that dispersion property is the effect of air entraining by synthesized nano-silica compounds. The result of the microstructure observation showed that the particle size of the synthesized nano-silica is smaller than silica fume and spread evenly among the cement particles. In initial The phenomenon of strength decreasing occurred due to delayed hydration reaction by the synthesized nano-silica with carboxyl(-COOH) and hydroxyl(-OH) functional group.

A New Xenon Plasma Flat Fluorescent Lamp Enhanced with MgO Nano-Crystals for Liquid Crystal Display Applications

  • Lee, Yang-Kyu;Heo, Seung-Taek;Lee, You-Kook;Lee, Dong-Gu
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권4호
    • /
    • pp.186-189
    • /
    • 2010
  • Nano-sized MgO single crystal powders have recently been reported to emit ultraviolet by stimulation of electrons in a vacuum. In this study, nanocrystalline MgO powders were applied to a xenon plasma flat fluorescent lamp (FFL) for a liquid crystal display backlight to improve its emission efficiency through the extra ultraviolet from the nano-MgO crystals. For comparison, a MgO nano-thin film was applied directly on the phosphors inside a lamp panel through e-beam evaporation. Adding MgO nano-crystal powders to the phosphors improved the luminance and efficiency of FFLs by around 20% and MgO nano-crystal coverage of 40% of the phosphor provided the best FFL emission characteristics; however, application of MgO thin film to the phosphors degraded the emission characteristics, even compared to FFLs without MgO. This was due to insufficient ultraviolet stimulation of the phosphors and the crystallinity and low secondary electron coefficient of the MgO.

Al 5052 함금 후판재의 전자빔 용접부 단면 형상과 강도에 관한 연구 (A Study on Electron Beam Weldmetal Cross Section Shapes and Strength of Al 5052 Thick Plate)

  • 김인호;이길영;주정민;박경태;천병선
    • Journal of Welding and Joining
    • /
    • 제27권3호
    • /
    • pp.73-79
    • /
    • 2009
  • This present paper investigated the mechanical properties and the microstructures of each penetration shapes classifying the conduction shape area and the keyhole shape area about electron beam welded 120(T)mm thick plated aluminum 5052 112H. As a result the penetration depth is increased linearly according to the output power, but the aspect ratio is decreased after the regular output power. In the conduction shape area, the Heat affected zone is observed relatively wider than the keyhole shape area. In the material front surface of the welded specimen, the width is decreased but the width in the material rear surface is increased. After the measuring the Micro Vikers Hardness, it showed almost similar hardness range in all parts, and after testing the tensile strength, the ultimate tensile strength is similar to the ultimate tensile strength of the base material in all the specimens, also the fracture point was generated in the base materials of all the samples. In the result of the impact test, impact absorbed energy of the Keyhole shape area is turned up very high, and also shown up the effect about four times of fracture toughness comparing the base material. In the last result of observing the fractographs, typical ductile fraction is shown in each weld metal, and in the basic material, the dimple fraction is shown. The weld metals are shown that there are no other developments of any new chemical compound during the fastness melting and solidification.

Controlling the Growth of Few-layer Graphene Dependent on Composition Ratio of Cu/Ni Homogeneous Solid Solution

  • Lim, Yeongjin;Choi, Hyonkwang;Gong, Jaeseok;Park, Yunjae;Jeon, Minhyon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.273.1-273.1
    • /
    • 2014
  • Graphene, a two dimensional plane structure of $sp^2$ bonding, has been promised for a new material in many scientific fields such as physics, chemistry, and so on due to the unique properties. Chemical vapor deposition (CVD) method using transitional metals as a catalyst can synthesize large scale graphene with high quality and transfer on other substrates. However, it is difficult to control the number of graphene layers. Therefore, it is important to manipulate the number of graphene layers. In this work, homogeneous solid solution of Cu and Ni was used to control the number of graphene layers. Each films with different thickness ratio of Cu and Ni were deposited on $SiO_2/Si$ substrate. After annealing, it was confirmed that the thickness ratio accords with the composition ratio by X-ray diffraction (XRD). The synthesized graphene from CVD was analyzed via raman spectroscopy, UV-vis spectroscopy, and 4-point probe to evaluate the properties. Therefore, the number of graphene layers at the same growth condition was controlled, and the correlation between mole fraction of Ni and the number of graphene layers was investigated.

  • PDF

나노 기술을 이용한 수처리 분리막 소재의 최근 연구동향 (Current Research Trends in Water Treatment Membranes Based on Nano Materials and Nano Technologies)

  • 이희대;조영훈;박호범
    • 멤브레인
    • /
    • 제23권2호
    • /
    • pp.101-111
    • /
    • 2013
  • 나노 소재는 표면적이 매우 크고 크기나 기공이 균일하여 분리막에서 물질 전달 통로나 특수한 기능성을 갖게 하는 소재로 이용이 가능하다. 그러나 나노 소재 및 나노 기술을 기반으로 한 분리막의 상용화를 위한 여러 가지 기술적인 한계가 존재하며 최근 나노 소재 및 제조 기술이 발전하고 다양해짐에 따라 분리막에 나노 소재 및 기술을 활용하려는 연구가 많이 진행되고 있다. 나노 소재 및 기술을 활용하는 경우 기존 분리막의 투과도 및 선택도를 크게 높일 수 있으며 열적, 화학적, 기계적 안정성 및 내오염성을 향상시키거나 기능성 소재를 활용하여 분리막에 새로운 기능을 부여할 수 있다.

나노-TDR센서를 이용한 토목구조물 모니터링 시스템 (Application of Nano-TDR Health Monitoring System in Civil Engineering)

  • 한희수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권5호통권57호
    • /
    • pp.93-100
    • /
    • 2009
  • 이 논문은 나노물질이 결합된 시간반사영역기(TDR)의 보의 변형에 관한 실험자료와 기존 구조 해석기법에 따른 변형간의 상관관계를 평가하기 위한 것이다. TDR의 동축케이블에 일정한 간격마다 나노물질 ($BaTiO_3$ powders and silver mixture)을 결합하여 토목구조물에 설치할 수 있도록 하였다. 실험결과,나노물질은 보에 설치된 동축케이블의 정확한 위치정보를 알려주었으며, TDR센서시스템과 Fourier series 를 활용하여 필터링 된 실험 자료는 보의 변형을 정확하게 알려주었다. 그러므로, 나노-TDR시스템과 Fourier filter를 활용하여 보의 변형에 관한 정확한 모니터링이 가능하였으며, 변형에 관한 보다 나은 해석이 가능하다는 점에서 기존의 TDR센서 혹은 광섬유 센서보다 진보한 시스템이라 할 수 있다.

Strain gradient based static stability analysis of composite crystalline shell structures having porosities

  • Fenjan, Raad M.;Faleh, Nadhim M.;Ridha, Ahmed A.
    • Steel and Composite Structures
    • /
    • 재36권6호
    • /
    • pp.631-642
    • /
    • 2020
  • This paper studies nonlinear stability behavior of a nanocrystalline silicon curved nanoshell considering strain gradient size-dependency. Nanocrystallines are composite materials with an interface phase and randomly distributed nano-size grains and pores. Imperfectness of the curved nanoshell has been defined based on an initial deflection. The formulation of nanocrystalline nanoshell has been established by thin shell theory and an analytical approach has been used in order to solve the buckling problem. For accurately describing the size effects related to nano-grains or nano-pores, their surface energies have been included. Nonlinear stability curves of the nanoshell are affected by the size of nano-grain, curvature radius and nano-pore volume fraction. It is found that increasing the nano-pore volume fraction results in lower buckling loads.